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Averaging and Differencing 

For simplicity to describe the   Averaging and differencing process we take only the 

first row of an 8*8 matrix. This row is shown below. Because our matrix is 8*8 the 

process will involve three steps  (23 =8) 

[ 3   5   4   8   13   7   5   3] 

Step 1 

For the first step we take the average of each pair of components in our original 

string and place the results in the first four positions of our new string. The remain 

four numbers are differences of the first element in each pair and its corresponding 

average e.g. 3-4=-1, 4-6=-2, these numbers are called detail coefficients. Our result 

of the first step therefore contains four averages and four detail coefficients (bold) 

as shown  

[ 4   6   10   4    -1   -2   3   1] 

Step 2 

We then apply this same method to the first four components of our new string 

resulting in two new averages and their corresponding details coefficients. The 

remain   four detail coefficients are simply carried directly down from our previous 

step. And the result for step two is as follow. 

[ 5   7   -1   3    -1   -2   3   1] 

Step 3 
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Performing the same averaging and differencing to the remaining pair of averages 

completes step three.  The last six components have again been carried down from 

the previous step. We know have as our string. One row average in the first position 

followed by seven detail coefficient  

[ 6   -1   -1   3    -1   -2   3   1] 

Haar Wavelet Transform model 

The easiest of all discrete wavelet transformations is the Discrete Haar Wavelet 

Transformation (HWT). Analysis of the Two-Dimensional HWT You can see why 

the wavelet transformation is well-suited for image compression. The two-

dimensional HWT of the image has most of the energy conserved in the upper left-

hand corner of the transform - the remaining three-quarters of the HWT consists 

primarily of values that are zero or near zero. The transformation is local as well - it 

turns out any element of the HWT is constructed from only four elements of the 

original input image. If we look at the HWT as a block matrix product, we can gain 

further insight about the transformation. 

Suppose that the input image is square so we will drop the subscripts that indicate 

the dimension of the HWT matrix. If we use H to denote the top block of the HWT 

matrix and G to denote the bottom block of the HWT, we can express the 

transformation as: 

We now see why there are four blocks in the wavelet transform. Let's look at each 

block individually. Note that the matrix H is constructed from the lowpass Haar filter 

and computes weighted averages while G computes weighted differences. The upper 
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left-hand block is HAHT - HA averages columns of A and the rows of this product 

are averaged by multiplication with HT. Thus the upper left-hand corner is an 

approximation of the entire image. In fact, it can be shown that elements in the upper 

left-hand corner of the HWT can be constructed by computing weighted averages 

of each 2 x 2 block of the input matrix. Mathematically, the mapping is 

The upper right-hand block is HAGT - HA averages columns of A and the rows of 

this product are differenced by multiplication with GT. Thus the upper right-hand 

corner holds information about vertical in the image - large values indicate a large 

vertical change as we move across the image and small values indicate little vertical 

change. Mathematically, the mapping is 

The lower left-hand block is GAHT - GA differences columns of A and the rows 

of this product are averaged by multiplication with HT. Thus the lower left-hand 

corner holds information about horizontal in the image - large values indicate a 

large horizontal change as we move down the image and small values indicate little 

horizontal change. Mathematically, the mapping is 

The lower right-hand block is differences across both columns and rows and the 

result is a bit harder to see. It turns out that this product measures changes along 

45-degree lines. This is diagonal differences. Mathematically, the mapping is 
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To summarize, the HWT of a digital image produces four blocks. The upper-left 

hand corner is an approximation or blur of the original image. The upper-right, 

lower-left, and lower-right blocks measure the differences in the vertical, horizontal, 

and diagonal directions, respectively. 

Iterating the Process 

If there is not much change in the image, the difference blocks are comprised of 

(near) zero values. If we apply quantization and convert near-zero values to zero, 

then the HWT of the image can be effectively coded and the storage space for the 

image can be drastically reduced. We can iterate the HWT and produce an even 

better result to pass to the coder. Suppose we compute the HWT of a digital image. 

Most of the high intensities are contained in the blur portion of the transformation. 

We can iterate and apply the HWT to the blur portion of the transform. So in the 

composite transformation, we replace the blur by itstransformation! The process is 

completely invertible - we apply the inverse HWT to the transform of the blur to 

obtain the blur. Then we apply the inverse HWT to obtain the original image. We 

can continue this process as often as we desire (and provided the dimensions of the 

data are divisible by suitable powers of two). The illustrations below show two 

iterations and three iterations of the HWT. 

𝑥 = [
𝑎 𝑏
𝑐 𝑑

] 
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𝑥 = 1
√2

⁄ [
𝑎 + 𝑏 + 𝑐 + 𝑑 𝑎 − 𝑏 + 𝑐 − 𝑑
𝑎 + 𝑏 − 𝑐 − 𝑑 𝑎 − 𝑏 − 𝑐 + 𝑑

] 

Top left: a+b+c+d = 4-point average or 2-D low pass (L0-L0) filter. 

Top right  : a-b+c-d = average horizontal gradient or horizontal highpass and vertical 

lowpass (Hi-L0) filter. 

Lower left : a+b-c-d = Average vertical gradient or horizontal lowpass and vertical 

high pass (L0-Hi) filter. 

Lower right a-b-c+d =diagonal curvature or 2-D highpass (Hi-Hi) filter  

To apply this transform to  a complete image, we group the pixels into 2*2 blocks 

and apply (3) to each block. The result (after reordering )is shown in figure 1(b). to 

view the result sensibly we have grouped all the top left sub image in figure 1(b) and 

done the same for the components in the other 3 positions  to form the corresponding 

other 3 sub images.   

E.g. (1). 

𝑥 = [
12 −2
−2 0

] 

𝑥′ = [
4 6
6 8

] 

E.g. (2). 

𝑥 = [
2 3
4 5

] 

𝑥′ = [
7 −1

−2 0
] 


