
 

 

 جامعة ألأنبار

كلية علوم الحاسوب وتكنولوجيا 

 المعلومات

 قسم أنظمة شبكات الحاسوب



 

1 
 

COMPUTER ARCHITECTURE : LECTURE 4                                 DR. OMAR MUNTHIR AL OKASHI 

FLOATING-POINT REPRESENTATION 

 Most of today’s computers are equipped with specialized hardware that 

performs floating-point arithmetic with no special programming required. 

 Floating-point numbers allow an arbitrary number of decimal places to 

the right of the decimal point. 

– For example: 0.125 = 1.25 × 10-1 

 5,000,000 = 5.0 × 106 

 

Simple Model 
 Computers use a form of scientific notation for floating-point 

representation. 

 Numbers written in scientific notation have three components: 

 
 

 We will use a 14-bit model with a 5-bit exponent, an 8-bit significand, 

and a sign bit (see Figure 2.1).  

 
 The one-bit sign field is the sign of the stored value. 

 The size of the exponent field, determines the range of values that can be 

represented. 

 The size of the significand determines the precision of the representation. 



 

2 
 

COMPUTER ARCHITECTURE : LECTURE 4                                 DR. OMAR MUNTHIR AL OKASHI 

 Let’s say that we wish to store the decimal number 17 in our model. 

 We know that 17 = 17.0 × 100 = 1.7 × 101 = 0.17 × 102.  

 Analogously, in binary,17 = (10001 × 20) = (1000.1 × 2 1) = (100.01× 22)    

= (10.001 × 23) = (1.0001 × 24 ) =  (0.10001 × 25). 

 

 If we use this last form, our fractional part will be 10001000 and our 

exponent will be 00101, as shown here: 

 
 Using this form, we can store numbers of much greater magnitude than 

we could using a fixed-point representation of 14 bits (which uses a total 

of 14 binary digits plus a binary, or radix, point).  

 If we want to represent 65536 = 0.1 × 217 in this model, we have: 

 
 Example: 

 – Express 3210 in the simplified 14-bit floating-point model. 

 We know that 32 is 25. So in (binary) scientific notation 32 = 1.0 × 25 = 

0.1 × 26. 

 Using this information, we put 110 (= 610) in the exponent field and 1 in 

the significand as shown. 

 

 
 



 

3 
 

COMPUTER ARCHITECTURE : LECTURE 4                                 DR. OMAR MUNTHIR AL OKASHI 

 
 

 One obvious problem with this model is that we haven’t provided for 

negative exponents.  

 If we wanted to store 0.25, we would have no way of doing so because 

0.25 is 2-2 and the exponent -2 cannot be represented.  

 To provide for negative exponents, we will use a biased exponent. 

 A bias is a number that is approximately midway in the range of values 

expressible by the exponent.  

 We subtract the bias from the value in the exponent to determine its true 

value. 

– In our case, we have a 5-bit exponent. We will use 15 for our bias. This 

is called excess-15 representation. 

 In our model, exponent values less than 15 are negative, representing 

fractional numbers. 

 Returning to our example of storing 17, we calculated 17 = 0.100012 × 25   

 If we update our model to use a biased exponent, the biased exponent is 

15 + 5 = 20: 

 



 

4 
 

COMPUTER ARCHITECTURE : LECTURE 4                                 DR. OMAR MUNTHIR AL OKASHI 

 If we wanted to store 0.25 = 0.1 × 2-1, we would have: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

CHARACTER CODES 
 We have seen how digital computers use the binary system to represent 

and manipulate numeric values.  

 We have yet to consider how these internal values can be converted to a 

form that is meaningful to humans.  

 The manner in which this is done depends on both the coding system 

used by the computer and how the values are stored and retrieved. 

Binary-Coded Decimal 
 Binary-coded decimal (BCD) is very common in electronics, particularly 

those that display numerical data, such as alarm clocks and calculators.  

 BCD encodes each digit of a decimal number into a 4-bit binary form.  

 Each decimal digit is individually converted to its binary equivalent. 

 For example, to encode 146, the decimal digits are replaced by 0001, 

0100, and 0110, respectively. 



 

5 
 

COMPUTER ARCHITECTURE : LECTURE 4                                 DR. OMAR MUNTHIR AL OKASHI 

ASCII 
 The American Standard Code for Information Interchange (ASCII). 

 ASCII is a direct descendant of the coding schemes used for decades by 

teletype (telex) devices.  

Unicode 
 Both EBCDIC and ASCII were built around the Latin alphabet. As such, 

they are restricted in their abilities to provide data representation for the 

non-Latin alphabets used by the majority of the world’s population. 

 Unicode is a 16-bit alphabet that is downward compatible with ASCII 

and the Latin-1character set.  

 Because the base coding of Unicode is 16 bits, it has the capacity to 

encode the majority of characters used in every language of the world. 

ERROR DETECTION AND CORRECTION 
 No communications channel or storage medium can be completely error-

free. It is a physical impossibility.  

 As more bits are packed per square millimeter of storage, magnetic flux 

densities increase. Error rates increase in direct proportion to the number 

of bits per second transmitted, or the number of bits per square millimeter 

of magnetic storage. 

 

Cyclic Redundancy Check 
 A cyclic redundancy check (CRC) is a type of checksum used primarily 

in data communications that determines whether an error has occurred 

within a large block or stream of information bytes.  

 The larger the block to be checked, the larger the checksum must be to 

provide adequate protection.  

 Checksums and CRCs are types of systematic error detection schemes, 

meaning that the errorchecking bits are appended to the original 

information byte. 

 The group of error-checking bits is called a syndrome.  



 

6 
 

COMPUTER ARCHITECTURE : LECTURE 4                                 DR. OMAR MUNTHIR AL OKASHI 

 The original information byte is unchanged by the addition of the error-

checking bits. 

Arithmetic Modulo 2 

 

 

 

 

 

 

 
 Modulo 2 division operates through a series of partial sums using the 

modulo 2 addition rules.  

EXAMPLE 2.39 

 Find the quotient and remainder when 1001011 is divided by 1011. 

 

 

 

 

 

 

 

 

 

 

 



 

7 
 

COMPUTER ARCHITECTURE : LECTURE 4                                 DR. OMAR MUNTHIR AL OKASHI 

 We can now proceed to show how CRCs are constructed.  

 We will do this by example: 

 

1. Let the information byte I = 1001011. (Any number of bytes can be 

used to form a message block.) 

2. The sender and receiver agree upon an arbitrary binary pattern, say, P 

= 1011. (Patterns beginning and ending with 1 work best.) 

 

3. Shift I to the left by one less than the number of bits in P, giving a new 

I = 1001011000. 

 

4. Using I as a dividend and P as a divisor, perform the modulo 2 division 

(as shown in Example 2.39). We ignore the quotient and note that the 

remainder is 100.  

The remainder is the actual CRC checksum. 

 

5. Add the remainder to I, giving the message M:  

1001011000 + 100 = 1001011100 

 

6. M is decoded and checked by the message receiver using the reverse 

process. 

 Only now P divides M exactly: 

 



 

8 
 

COMPUTER ARCHITECTURE : LECTURE 4                                 DR. OMAR MUNTHIR AL OKASHI 

 
 

 A remainder other than 0 indicates that an error has occurred in the 

transmission of M. 



 

9 
 

COMPUTER ARCHITECTURE : LECTURE 4                                 DR. OMAR MUNTHIR AL OKASHI 

Hamming Codes 

 Data communications channels are simultaneously more error prone and 

more tolerant of errors than disk systems.  

 In data communications, it is sufficient to have only the ability to detect 

errors.  

 If a communications device determines that a message contains an 

erroneous bit, all it has to do is request retransmission.  

 Storage systems and memory do not have this luxury.  

 A disk can sometimes be the sole repository of a financial transaction or 

other collection of nonreproducible real-time data.  

 Storage devices and memory must therefore have the ability to not only 

detect but to correct a reasonable number of errors. 

 One of the most effective codes—and the oldest—is the Hamming code.  

 Hamming codes are an adaptation of the concept of parity, whereby error 

detection and correction capabilities are increased in proportion to the 

number of parity bits added to an information word.  

 Hamming codes are used in situations where random errors are likely to 

occur.  

 We mentioned that Hamming codes use parity bits, also called check bits 

or redundant bits.  

 The memory word itself consists of m bits, but r redundant bits are added 

to allow for error detection and/or correction.  

 Thus, the final word, called a code word, is an n-bit unit containing m 

data bits and r check bits. 

 There exists a unique code word consisting of n = m + r bits for each data 

word as follows: 

 

 

 The number of bit positions in which two code words differ is called the 

Hamming distance of those two code words.  



 

10 
 

COMPUTER ARCHITECTURE : LECTURE 4                                 DR. OMAR MUNTHIR AL OKASHI 

 For example, if we have the following two code words: 

 

 

 

 

 We see that they differ in 3 bit positions (marked by *), so the Hamming 

distance of these two code words is 3. (we have not yet discussed how to 

create code words; we will do that shortly.) 

 The Hamming distance between two code words is important in the 

context of error detection.  

 If we wish to create a code that guarantees detection of all single-bit 

errors (an error in only 1 bit), all pairs of code words must have a 

Hamming distance of at least 2.  

 So, to detect k (or fewer) single-bit errors, the code must have a 

Hamming distance of D(min) = k + 1.  

 Hamming codes can always detect D(min) - 1 errors and correct  

⌊(D(min) - 1)/2⌋ errors.  

 Accordingly, the Hamming distance of a code must be at least 2k + 1 in 

order for it to be able to correct k errors. 

 Code words are constructed from information words using r parity bits.  

 Because each code word consists of n bits, where n = m + r, there are 2n 

total bit patterns possible.  

 Because n = m + r, we can write the inequality as:  

 

(m + r + 1) × 2m ≤ 2m+r   or   (m + r + 1) ≤ 2r 

 

 This inequality is important because it specifies the lower limit on the 

number of check bits required (we always use as few check bits as 

possible) to construct a code with m data bits and r check bits that 

corrects all single-bit errors. 



 

11 
 

COMPUTER ARCHITECTURE : LECTURE 4                                 DR. OMAR MUNTHIR AL OKASHI 

 Suppose we have data words of length m = 4. Then: 

 

(4 + r + 1) ≤ 2r 

 

 Which implies that r must be greater than or equal to 3.  

 We choose r = 3. This means to build a code with data words of 4 bits 

that should correct single-bit errors, we must add 3 check bits. 

 

The Hamming Algorithm 

 
 The Hamming algorithm provides a straightforward method for designing 

codes to correct single-bit errors.  

 To construct error-correcting codes for any size memory word, we follow 

these steps: 

1. Determine the number of check bits, r, necessary for the code and then 

number the n bits (where n = m + r), right to left, starting with 1 (not 0). 

2. Each bit whose bit number is a power of 2 is a parity bit—the others 

are data bits. 

3. Assign parity bits to check bit positions as follows: Bit b is checked by 

those parity bits b1 , b2 , . . . , bj such that b1 + b2 + . . . + bj = b (where “+” 

indicates the modulo 2 sum). 

 We now present an example to illustrate these steps and the actual 

process of error correction. 

EXAMPLE  

 Using the Hamming code just described and even parity, encode the 8-bit 

ASCII character K. (The high-order bit will be 0.) Induce a single-bit 

error and then indicate how to locate the error. 

 We first determine the code word for K. 

 



 

12 
 

COMPUTER ARCHITECTURE : LECTURE 4                                 DR. OMAR MUNTHIR AL OKASHI 

Step 1: Determine the number of necessary check bits, add these bits to 

the data bits, and number all n bits. 

 Because m = 8, we have: (8 + r + 1) < 2r, which implies that r must be 

greater than or equal to 4. We choose r = 4. 

 Step 2: Number the n bits right to left, starting with 1, which results in: 

 
 The parity bits are marked by boxes. 

 Step 3: Assign parity bits to check the various bit positions. 

 To perform this step, we first write all bit positions as sums of those 

numbers that are powers of 2 (1, 2, 4, 8): 

 

 

 

 

 

 

 

 

 

 

 

 

 

 The number 1 contributes to 1, 3, 5, 7, 9, and 11, so this parity bit will 

reflect the parity of the bits in these positions. 

 Similarly, 2 contributes to 2, 3, 6, 7, 10, and 11, so the parity bit in 

position 2 reflects the parity of this set of bits.  

 Bit 4 provides parity for 4, 5, 6, 7, and 12, and bit 8 provides parity for 

bits 8, 9, 10, 11, and 12.  



 

13 
 

COMPUTER ARCHITECTURE : LECTURE 4                                 DR. OMAR MUNTHIR AL OKASHI 

 If we write the data bits in the nonboxed blanks, and then add the parity 

bits, we have the following code word as a result: 

 

 

 

 

 Let’s introduce an error in bit position b9, resulting in the code word 

010111010110.  

 If we use the parity bits to check the various sets of bits, we find the 

following: 

 Bit 1 checks 1, 3, 5, 7, 9, and 11: With even parity, this produces an error. 

 Bit 2 checks 2, 3, 6, 7, 10, and 11: This is okay. 

 Bit 4 checks 4, 5, 6, 7, and 12: This is okay. 

 Bit 8 checks 8, 9, 10, 11, and 12: This produces an error. 

 Parity bits 1 and 8 show errors.  

 These two parity bits both check 9 and 11, so the single-bit error must be 

in either bit 9 or bit 11.  

 However, because bit 2 checks bit 11 and indicates no error has occurred 

in the subset of bits it checks, the error must occur in bit 9. (We know 

this because we created the error; 

 However, note that even if we have no clue where the error is, using this 

method allows us to determine the position of the error and correct it by 

simply flipping the bit.) 

 An easier method to detect and correct the error bit is to add the positions 

of the parity bits that indicate an error.  

 We found that parity bits 1 and 8 produced an error, and 1 + 8 = 9, which 

is exactly where the error occurred. 

 


