

 جامعة ألأنبار

كلية علوم الحاسوب وتكنولوجيا

 المعلومات

 قسم أنظمة شبكات الحاسوب

1

COMPUTER ARCHITECTURE : LECTURE 8 DR. OMAR MUNTHIR AL OKASHI

MARIE: An Introduction to a Simple Computer

1- Register Transfer Notation
 We have seen that digital systems consist of many components, including

ALUs, registers, memory, decoders, and control units.

 These units are interconnected by buses to allow information to flow

through the system.

 The instruction set presented for MARIE in the preceding sections

constitutes a set of machine level instructions used by these

 components to execute a program.

 Each instruction appears to be very simplistic; however, if you examine

what actually happens at the component level, each instruction involves

multiple operations.

 For example, the Load instruction loads the contents of the given

memory location into the AC register. But, if we observe what is

happening at the component level, we see that multiple “mini-instructions

” are being executed.

 First, the address from the instruction must be loaded into the MAR.

 Then the data in memory at this location must be loaded into the MBR.

 Then the MBR must be loaded into the AC.

 These mini-instructions are called micro operations and specify the

elementary operations that can be performed on data stored in registers.

 The symbolic notation used to describe the behavior of micro operations

is called register transfer notation (RTN) or register transfer

language (RTL).

 We use the notation M[X] to indicate the actual data stored at location X

in memory, and ← to indicate a transfer of information.

2

COMPUTER ARCHITECTURE : LECTURE 8 DR. OMAR MUNTHIR AL OKASHI

 In reality, a transfer from one register to another always involves a

transfer onto the bus from the source register, and then a transfer off the

bus into the destination register.

 However, for the sake of clarity, we do not include these bus transfers,

assuming that you understand that the bus must be used for data transfer.

 We now present the register transfer notation for each of the instructions

in the ISA for MARIE.

 Load X
This instruction loads the contents of memory location X into the AC.

However, the address X must first be placed into the MAR. Then the data

at location M[MAR] (or address X) is moved into the MBR. Finally, this

data is placed in the AC.

 MAR← X

 MBR← M[MAR]

 AC← MBR

 Because the IR must use the bus to copy the value of X into the MAR,

before the data at location X can be placed into the MBR, this operation

requires two bus cycles.

 Therefore, these two operations are on separate lines to indicate they

cannot occur during the same cycle.

 Because we have a special connection between the MBR and the AC, the

transfer of the data from the MBR to the AC can occur immediately after

the data is put into the MBR, without waiting for the bus.

 Store X
This instruction stores the contents of the AC in memory location X:

3

COMPUTER ARCHITECTURE : LECTURE 8 DR. OMAR MUNTHIR AL OKASHI

 MAR← X

 MBR← AC

 M [MAR] ← MBR

 Add X

The data value stored at address X is added to the AC. This can be

accomplished as follows:

MAR← X

MBR← M [MAR]

AC← AC + MBR

 Subt. X

Similar to Add, this instruction subtracts the value stored at address X

from the accumulator and places the result back in the AC:

MAR← X

MBR← M [MAR]

AC← AC – MBR

 Input

Any input from the input device is first routed into the InREG. Then the

data is transferred into the AC.

AC← InREG

 Output

This instruction causes the contents of the AC to be placed into the

OutREG, where it is eventually sent to the output device.

OutREG← AC

 Halt

4

COMPUTER ARCHITECTURE : LECTURE 8 DR. OMAR MUNTHIR AL OKASHI

No operations are performed on registers; the machine simply ceases

execution.

 Skipcond

Recall that this instruction uses the bits in positions 10 and 11 in the

address field to determine what comparison to perform on the AC.

Depending on this bit combination, the AC is checked to see whether it is

negative, equal to zero, or greater than zero. If the given condition is true,

then the next instruction is skipped. This is performed by incrementing

the PC register by 1.

 if IR[11–10] = 00 then {if bits 10 and 11 in the IR are both 0}

If AC < 0 then PC ← PC+1

else If IR[11–10] = 01 then {if bit 11 = 0 and bit 10 = 1}

If AC = 0 then PC ← PC + 1

else If IR[11–10] = 10 then {if bit 11 = 1 and bit 10 = 0}

If AC > 0 then PC ← PC + 1

 If the bits in positions ten and eleven are both ones, an error

condition results.

 However, an additional condition could also be defined using these bit

values.

 Jump X

This instruction causes an unconditional branch to the given address X.

Therefore to execute this instruction, X must be loaded into the PC.

PC← X

In reality the lower or least significant 12 bits of the instruction register

(or IR[11–0]) reflect the value of X. So this transfer is more accurately

depicted as:

PC← IR [11–0]

5

COMPUTER ARCHITECTURE : LECTURE 8 DR. OMAR MUNTHIR AL OKASHI

 However, we feel that the notation PC ← X is easier to understand and

relate to the actual instructions, so we use this instead.

 Register transfer notation is a symbolic means of expressing what is

happening in the system when a given instruction is executing.

 RTN is sensitive to the data path, in that if multiple micro operations

must share the bus, they must be executed in a sequential fashion, one

following the other.

2- INSTRUCTION PROCESSING
 All computers follow a basic machine cycle: the fetch, decode, and

execute cycle.

2.1 The Fetch–Decode–Execute Cycle

 The fetch–decode–execute cycle represents the steps that a computer

follows to run a program.

 The CPU fetches an instruction (transfers it from main memory to the

instruction register), decodes it (determines the opcode and fetches any

data necessary to carry out the instruction), and executes it (performs the

operation[s] indicated by the instruction).

 Notice that a large part of this cycle is spent copying data from one

location to another.

 When a program is initially loaded, the address of the first instruction

must be placed in the PC.

 The steps in this cycle, which take place in specific clock cycles, are

listed below.

 Note that Steps 1 and 2 make up the fetch phase, Step 3 makes up the

decode phase, and Step 4 is the execute phase.

1. Copy the contents of the PC to the MAR: MAR ← PC.

2. Go to main memory and fetch the instruction found at the address in

the MAR, placing this instruction in the IR; increment PC by 1 (PC now

6

COMPUTER ARCHITECTURE : LECTURE 8 DR. OMAR MUNTHIR AL OKASHI

points to the next instruction in the program): IR ← M[MAR] and then

PC ← PC + 1. (Note: Because MARIE is word addressable, the PC is

incremented by 1, which results in the next word’s address occupying the

PC. If MARIE were byte addressable, the PC would need to be

incremented by 2 to point to the address of the next instruction, because

each instruction would require 2 bytes.)

3. Copy the rightmost 12 bits of the IR into the MAR; decode the

leftmost 4 bits to determine the opcode, MAR ← IR[11-0], and decode

IR[15–12].

4. If necessary, use the address in the MAR to go to memory to get data,

placing the data in the MBR (and possibly the AC), and then execute the

instruction MBR ← M[MAR] and execute the actual instruction.

 This cycle is illustrated in the flowchart in Figure 4.11.

7

COMPUTER ARCHITECTURE : LECTURE 8 DR. OMAR MUNTHIR AL OKASHI

 Note that computers today, even with large instruction sets, long

instructions, and huge memories, can execute millions of these fetch–

decode–execute cycles in the blink of an eye.

 2.2 Interrupts and the Instruction Cycle

 All computers provide a means for the normal fetch–decode–execute

cycle to be interrupted.

 These interruptions may be necessary for many reasons, including a

program error (such as division by 0, arithmetic overflow, stack

overflow, or attempting to access a protected area of memory); a

hardware error (such as a memory parity error or power failure); an I/O

completion (which happens when a disk read is requested and the data

transfer is complete); a user interrupt (such as hitting Ctrl-C or Ctrl-Break

to stop a program); or an interrupt from a timer set by the operating

system (such as is necessary when allocating virtual memory or

performing certain bookkeeping functions).

 All of these have something in common: They interrupt the normal flow

of the fetch–decode–execute cycle and tell the computer to stop what it is

currently doing and go do something else. They are, naturally, called

interrupts.

 3- A SIMPLE PROGRAM

 Consider the simple MARIE program given below. We show a set of

mnemonic instructions stored at addresses 100 - 106 (hex):

8

COMPUTER ARCHITECTURE : LECTURE 8 DR. OMAR MUNTHIR AL OKASHI

 Let’s look at what happens inside the computer when our program runs.

 This is the LOAD 104 instruction:

 Our second instruction is ADD 105.

9

COMPUTER ARCHITECTURE : LECTURE 8 DR. OMAR MUNTHIR AL OKASHI

