

 جامعة ألأنبار

كلية علوم الحاسوب وتكنولوجيا

 المعلومات

 قسم أنظمة شبكات الحاسوب

1

COMPUTER ARCHITECTURE : LECTURE 12 DR. OMAR MUNTHIR AL OKASHI

A Closer Look at Instruction Set Architectures

5.5 Instruction Level Pipelining:

 Some CPUs break the fetch-decode execute cycle down into smaller

steps, where some of these smaller steps can be performed in parallel.

 This overlapping speeds up execution. This method, used by all current

CPUs, is known as pipelining.

 Suppose the fetch-decode-execute cycle were broken into the following

mini-steps:

1. Fetch instruction

2. Decode opcode

3. Calculate effective address of operands

4. Fetch operands

5. Execute instruction

6. Store result

 Suppose we have a six-stage pipeline. S1 fetches the instruction, S2

decodes it, S3 determines the address of the operands, S4 fetches them,

S5 executes the instruction, and S6 stores the result.

 Each step in a computer pipeline completes a part of an instruction.

 Like the automobile assembly line, different steps are completing

different parts of different instructions in parallel.

 Each of the steps is called a pipeline stage. The stages are connected to

form a pipe. Instructions enter at one end, progress through the various

stages, and exit at the other end.

 The goal is to balance the time taken by each pipeline stage (i.e., more or

less the same as the time taken by any other pipeline stage).

 If the stages are not balanced in time, after a while, faster stages will be

waiting on slower ones.

 To see an example of this imbalance in real life, consider the stages of

doing laundry. If you have only one washer and one dryer, you usually

2

COMPUTER ARCHITECTURE : LECTURE 12 DR. OMAR MUNTHIR AL OKASHI

end up waiting on the dryer. If you consider washing as the first stage and

drying as the next, you can see that the longer drying stage causes clothes

to pile up between the two stages.

 If you add folding clothes as a third stage, you soon realize that this stage

would consistently be waiting on the other, slower stages

 Figure 4.1 provides an illustration of computer pipelining with

overlapping stages.

 We see each clock cycle and each stage for each instruction (where S1

represents the fetch, S2 represents the decode, S3 is the calculate state, S4

is the operand fetch, S5 is the execution, and S6 is the store).

 We see from Figure 4.1 that once instruction 1 has been fetched and is in

the process of being decoded, we can start the fetch on instruction 2.

3

COMPUTER ARCHITECTURE : LECTURE 12 DR. OMAR MUNTHIR AL OKASHI

 When instruction 1 is fetching operands, and instruction 2 is being

decoded, we can start the fetch on instruction 3. Notice these events can

occur in parallel, very much like an automobile assembly line.

 Suppose we have a k-stage pipeline. Assume the clock cycle time is tp,

that is, it takes tp time per stage.

 Assume also we have n instructions (often called tasks) to process.

 Task 1 (T1) requires (k × tp) time to complete.

 The remaining (n - 1) tasks emerge from the pipeline one per cycle,

which implies a total time for these tasks of [(n - 1) × tp].

 Therefore, the time to complete n tasks using a k-stage pipeline requires:

4

COMPUTER ARCHITECTURE : LECTURE 12 DR. OMAR MUNTHIR AL OKASHI

 The theoretical speedup, k, is the number of stages in the pipeline.

 Let’s look at an example. Suppose we have a 4-stage pipeline, where:

• S1 = fetch instruction

• S2 = decode and calculate effective address

• S3 = fetch operand

• S4 = execute instruction and store results

 We must also assume the architecture provides a means to fetch data and

 instructions in parallel. This can be done with separate instruction and

data paths; however, most memory systems do not allow this.

 Instead, they provide the operand in cache, which, in most cases, allows

the instruction and operand to be fetched simultaneously.

 There are several conditions that result in “pipeline conflicts,” which keep

us from reaching the goal of executing one instruction per clock cycle.

 These include:

• Resource conflicts

• Data dependencies

• Conditional branch statements

 Resource conflicts are a major concern in instruction-level parallelism.

 For example, if one instruction is storing a value to memory while

another is being fetched from memory, both need access to memory.

 Typically, this is resolved by allowing the instruction executing to

continue, while forcing the instruction fetch to wait.

 Certain conflicts can also be resolved by providing two separate

pathways:

 one for data coming from memory and another for instructions coming

from memory.

 Specialized hardware can also be used to detect these conflicts and route

data through special paths that exist between various stages of the

pipeline.

5

COMPUTER ARCHITECTURE : LECTURE 12 DR. OMAR MUNTHIR AL OKASHI

 This reduces the time necessary for the instruction to access the required

operand.

Example:

 A linear pipe with 4 stages process 1000 tasks the clock period is 60 nsec

calculate.

1-The execution time

2-The speed up

