
Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022 -2023

 جامعة الانبار

 كلية علوم الحاسوب وتكنولوجيا المعلومات

 قسم أنظمة شبكات الحاسوب

 OOPكيانية برمجة

 ثانيةالمرحلة ال

 الأول والثاني الفصل الدراسي

 مدرس المادة

 م.د. سميه عبدالله حمد

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Python Fundamental Introduction

What is Python?

Python is a popular programming language. It was created by Guido van

Rossum, and released in 1991.

It is used for:

 web development (server-side),

 software development,

 mathematics,

 system scripting.

What can Python do?

 Python can be used on a server to create web applications.

 Python can be used alongside software to create workflows.

 Python can connect to database systems. It can also read and modify

files.

 Python can be used to handle big data and perform complex

mathematics.

 Python can be used for rapid prototyping, or for production-ready

software development.

Why Python?

 Python works on different platforms (Windows, Mac, Linux,

Raspberry Pi, etc).

 Python has a simple syntax similar to the English language.

 Python has syntax that allows developers to write programs with

fewer lines than some other programming languages.

 Python runs on an interpreter system, meaning that code can be

executed as soon as it is written. This means that prototyping can be

very quick.

 Python can be treated in a procedural way, an object-oriented way

or a functional way.

Python Syntax compared to other programming languages

 Python was designed for readability, and has some similarities to the

English language with influence from mathematics.

 Python uses new lines to complete a command, as opposed to other

programming languages which often use semicolons or parentheses.

 Python relies on indentation, using whitespace, to define scope; such

as the scope of loops, functions and classes. Other programming

languages often use curly-brackets for this purpose.

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Example

print("Hello, World!")

Python Indentation

Indentation refers to the spaces at the beginning of a code line. Where in

other programming languages the indentation in code is for readability

only, the indentation in Python is very important. Python uses indentation

to indicate a block of code.

Example

if 5 > 2:

 print("Five is greater than two!")

Python will give you an error if you skip the indentation:

Example

Syntax Error:

if 5 > 2:

print("Five is greater than two!")

The number of spaces is up to you as a programmer, the most common use

is four, but it has to be at least one.

Example

if 5 > 2:

 print("Five is greater than two!")

if 5 > 2:

 print("Five is greater than two!")

You have to use the same number of spaces in the same block of code,

otherwise Python will give you an error:

Example

Syntax Error:

if 5 > 2:

 print("Five is greater than two!")

 print("Five is greater than two!")

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Python Variables

In Python, variables are created when you assign a value to it:

Example

Variables in Python:

x = 5

y = "Hello, World!"

Python has no command for declaring a variable.

Comments

Comments can be used to explain Python code, to make the code more

readable, and to prevent execution when testing code.

Creating a Comment

Comments starts with a #, and Python will ignore them:

Example

#This is a comment

print("Hello, World!")

Comments can be placed at the end of a line, and Python will ignore the

rest of the line:

Example

print("Hello, World!") #This is a comment

A comment does not have to be text that explains the code, it can also be

used to prevent Python from executing code:

Example

#print("Hello, World!")

print("Cheers, Mate!")

Multi Line Comments

Python does not really have a syntax for multi line comments. To add a

multiline comment you could insert a # for each line:

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Example

#This is a comment

#written in

#more than just one line

print("Hello, World!")

Or, not quite as intended, you can use a multiline string.

Since Python will ignore string literals that are not assigned to a variable,

you can add a multiline string (triple quotes) in your code, and place your

comment inside it:

Example

"""

This is a comment

written in

more than just one line

"""

print("Hello, World!")

As long as the string is not assigned to a variable, Python will read the

code, but then ignore it, and you have made a multiline comment.

Variables

Variables are containers for storing data values.

Creating Variables

Python has no command for declaring a variable. A variable is created the

moment you first assign a value to it.

Example

x = 5

y = "John"

print(x)

print(y)

Variables do not need to be declared with any particular type, and can even

change type after they have been set.

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Example

x = 4 # x is of type int

x = "Sally" # x is now of type str

print(x)

Casting

If you want to specify the data type of a variable, this can be done with

casting.

Example

x = str(3) # x will be '3'

y = int(3) # y will be 3

z = float(3) # z will be 3.0

Get the Type

You can get the data type of a variable with the type() function.

Example

x = 5

y = "John"

print(type(x))

print(type(y))

Single or Double Quotes?

String variables can be declared either by using single or double quotes:

Example

x = "John"

is the same as

x = 'John'

Case-Sensitive

Variable names are case-sensitive.

Example

This will create two variables:

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

a = 4

A = "Sally"

#A will not overwrite a

Variable Names

A variable can have a short name (like x and y) or a more descriptive name

(age, carname, total_volume). Rules for Python variables:

 A variable name must start with a letter or the underscore character

 A variable name cannot start with a number

 A variable name can only contain alpha-numeric characters and

underscores (A-z, 0-9, and _)

 Variable names are case-sensitive (age, Age and AGE are three

different variables)

Example

Legal variable names:

myvar = "John"

my_var = "John"

_my_var = "John"

myVar = "John"

MYVAR = "John"

myvar2 = "John"

Example

Illegal variable names:

2myvar = "John"

my-var = "John"

my var = "John"

Remember that variable names are case-sensitive

Multi Words Variable Names

Variable names with more than one word can be difficult to read. There are

several techniques you can use to make them more readable:

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Camel Case

Each word, except the first, starts with a capital letter:

myVariableName = "John"

Pascal Case

Each word starts with a capital letter:

MyVariableName = "John"

Snake Case

Each word is separated by an underscore character:

my_variable_name = "John"

Many Values to Multiple Variables

Python allows you to assign values to multiple variables in one line:

Example

x, y, z = "Orange", "Banana", "Cherry"

print(x)

print(y)

print(z)

Note: Make sure the number of variables matches the number of values, or

else you will get an error.

One Value to Multiple Variables

And you can assign the same value to multiple variables in one line:

Example

x = y = z = "Orange"

print(x)

print(y)

print(z)

Unpack a Collection

If you have a collection of values in a list, tuple etc. Python allows you to

extract the values into variables. This is called unpacking.

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Example

Unpack a list:

fruits = ["apple", "banana", "cherry"]

x, y, z = fruits

print(x)

print(y)

print(z)

Output Variables

The Python print() function is often used to output variables.

Example

x = "Python is awesome"

print(x)

In the print() function, you output multiple variables, separated by a

comma:

Example

x = "Python"

y = "is"

z = "awesome"

print(x, y, z)

You can also use the + operator to output multiple variables:

Example

x = "Python "

y = "is "

z = "awesome"

print(x + y + z)

Notice the space character after "Python " and "is ", without them the result

would be "Pythonisawesome".

For numbers, the + character works as a mathematical operator:

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Example

x = 5

y = 10

print(x + y)

In the print() function, when you try to combine a string and a number with

the + operator, Python will give you an error:

Example

x = 5

y = "John"

print(x + y)

The best way to output multiple variables in the print() function is to

separate them with commas, which even support different data types:

Example

x = 5

y = "John"

print(x, y)

Python Data Types

Built-in Data Types

In programming, data type is an important concept. Variables can store

data of different types, and different types can do different things. Python

has the following data types built-in by default, in these categories:

Text Type: str

Numeric Types: int, float, complex

Sequence Types: list, tuple, range

Mapping Type: dict

Set Types: set, frozenset

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Boolean Type: bool

Binary Types: bytes, bytearray, memoryview

None Type: NoneType

Getting the Data Type

You can get the data type of any object by using the type() function:

Example

Print the data type of the variable x:

x = 5

print(type(x))

Python Numbers

There are three numeric types in Python:

 int

 float

 complex

Variables of numeric types are created when you assign a value to them:

Example

x = 1 # int

y = 2.8 # float

z = 1j # complex

To verify the type of any object in Python, use the type() function:

Example

print(type(x))

print(type(y))

print(type(z))

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Int

Int, or integer, is a whole number, positive or negative, without decimals,

of unlimited length.

Example

Integers:

x = 1

y = 35656222554887711

z = -3255522

print(type(x))

print(type(y))

print(type(z))

Float

Float, or "floating point number" is a number, positive or negative,

containing one or more decimals.

Example

Floats:

x = 1.10

y = 1.0

z = -35.59

print(type(x))

print(type(y))

print(type(z))

Float can also be scientific numbers with an "e" to indicate the power of

10.

Example

Floats:

x = 35e3

y = 12E4

z = -87.7e100

print(type(x))

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

print(type(y))

print(type(z))

Complex

Complex numbers are written with a "j" as the imaginary part:

Example

Complex:

x = 3+5j

y = 5j

z = -5j

print(type(x))

print(type(y))

print(type(z))

Type Conversion

You can convert from one type to another with the int(), float(),

and complex() methods:

Example

Convert from one type to another:

x = 1 # int

y = 2.8 # float

z = 1j # complex

#convert from int to float:

a = float(x)

#convert from float to int:

b = int(y)

#convert from int to complex:

c = complex(x)

print(a)

print(b)

print(c)

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

print(type(a))

print(type(b))

print(type(c))

Note: You cannot convert complex numbers into another number type.

Random Number

Python does not have a random() function to make a random number, but

Python has a built-in module called random that can be used to make

random numbers:

Example

Import the random module, and display a random number between 1 and

9:

import random

print(random.randrange(1, 10))

Strings

Strings in python are surrounded by either single quotation marks, or

double quotation marks.

'hello' is the same as "hello".

You can display a string literal with the print() function:

Example

print("Hello")

print('Hello')

Assign String to a Variable

Assigning a string to a variable is done with the variable name followed by

an equal sign and the string:

Example

a = "Hello"

print(a)

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Multiline Strings

You can assign a multiline string to a variable by using three quotes:

Example

You can use three double quotes:

a = """Lorem ipsum dolor sit amet,

consectetur adipiscing elit,

sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua."""

print(a)

Or three single quotes:

Example

a = '''Lorem ipsum dolor sit amet,

consectetur adipiscing elit,

sed do eiusmod tempor incididunt

ut labore et dolore magna aliqua.'''

print(a)

Note: in the result, the line breaks are inserted at the same position as in

the code.

Strings are Arrays

Like many other popular programming languages, strings in Python are

arrays of bytes representing unicode characters.

However, Python does not have a character data type, a single character is

simply a string with a length of 1.

Square brackets can be used to access elements of the string.

Example

Get the character at position 1 (remember that the first character has the

position 0):

a = "Hello, World!"

print(a[1])

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Looping Through a String

Since strings are arrays, we can loop through the characters in a string, with

a for loop.

Example

Loop through the letters in the word "banana":

for x in "banana":

 print(x)

String Length

To get the length of a string, use the len() function.

Example

The len() function returns the length of a string:

a = "Hello, World!"

print(len(a))

Check String

To check if a certain phrase or character is present in a string, we can use

the keyword in.

Example

Check if "free" is present in the following text:

txt = "The best things in life are free!"

print("free" in txt)

Use it in an if statement:

Example

Print only if "free" is present:

txt = "The best things in life are free!"

if "free" in txt:

 print("Yes, 'free' is present.")

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Check if NOT

To check if a certain phrase or character is NOT present in a string, we can

use the keyword not in.

Example

Check if "expensive" is NOT present in the following text:

txt = "The best things in life are free!"

print("expensive" not in txt)

Use it in an if statement:

Example

print only if "expensive" is NOT present:

txt = "The best things in life are free!"

if "expensive" not in txt:

 print("No, 'expensive' is NOT present.")

Slicing String

You can return a range of characters by using the slice syntax. Specify the

start index and the end index, separated by a colon, to return a part of the

string.

Example

Get the characters from position 2 to position 5 (not included):

b = "Hello, World!"

print(b[2:5])

Note: The first character has index 0.

Slice From the Start

By leaving out the start index, the range will start at the first character:

Example

Get the characters from the start to position 5 (not included):

b = "Hello, World!"

print(b[:5])

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Slice To the End

By leaving out the end index, the range will go to the end:

Example

Get the characters from position 2, and all the way to the end:

b = "Hello, World!"

print(b[2:])

Negative Indexing

Use negative indexes to start the slice from the end of the string:

Example

Get the characters:

From: "o" in "World!" (position -5)

To, but not included: "d" in "World!" (position -2):

b = "Hello, World!"

print(b[-5:-2])

Python - Modify Strings

Python has a set of built-in methods that you can use on strings.

Upper Case

Example

The upper() method returns the string in upper case:

a = "Hello, World!"

print(a.upper())

Lower Case

Example

The lower() method returns the string in lower case:

a = "Hello, World!"

print(a.lower())

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Remove Whitespace

Whitespace is the space before and/or after the actual text, and very often

you want to remove this space.

Example

The strip() method removes any whitespace from the beginning or the end:

a = " Hello, World! "

print(a.strip()) # returns "Hello, World!"

Replace String

Example

The replace() method replaces a string with another string:

a = "Hello, World!"

print(a.replace("H", "J"))

Split String

The split() method returns a list where the text between the specified

separator becomes the list items.

Example

The split() method splits the string into substrings if it finds instances of

the separator:

a = "Hello, World!"

print(a.split(",")) # returns ['Hello', ' World!']

String Concatenation

To concatenate, or combine, two strings you can use the + operator.

Example

Merge variable a with variable b into variable c:

a = "Hello"

b = "World"

c = a + b

print(c)

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Example

To add a space between them, add a " ":

a = "Hello"

b = "World"

c = a + " " + b

print(c)

String Format

As we learned in the Python Variables, we cannot combine strings and

numbers like this:

Example

age = 36

txt = "My name is John, I am " + age

print(txt)

But we can combine strings and numbers by using the format() method!

The format() method takes the passed arguments, formats them, and places

them in the string where the placeholders {} are:

Example

Use the format() method to insert numbers into strings:

age = 36

txt = "My name is John, and I am {}"

print(txt.format(age))

The format() method takes unlimited number of arguments, and are placed

into the respective placeholders:

Example

quantity = 3

itemno = 567

price = 49.95

myorder = "I want {} pieces of item {} for {} dollars."

print(myorder.format(quantity, itemno, price))

You can use index numbers {0} to be sure the arguments are placed in the

correct placeholders:

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Example

quantity = 3

itemno = 567

price = 49.95

myorder = "I want to pay {2} dollars for {0} pieces of

item {1}."

print(myorder.format(quantity, itemno, price))

Boolean Values

In programming you often need to know if an expression is True or False.

You can evaluate any expression in Python, and get one of two

answers, True or False.

When you compare two values, the expression is evaluated and Python

returns the Boolean answer:

Example

print(10 > 9)

print(10 == 9)

print(10 < 9)

When you run a condition in an if statement, Python returns True or False:

Example

Print a message based on whether the condition is True or False:

a = 200

b = 33

if b > a:

 print("b is greater than a")

else:

 print("b is not greater than a")

Evaluate Values and Variables

The bool() function allows you to evaluate any value, and give

you True or False in return,

Example

Evaluate a string and a number:

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

print(bool("Hello"))

print(bool(15))

Example

Evaluate two variables:

x = "Hello"

y = 15

print(bool(x))

print(bool(y))

Most Values are True

Almost any value is evaluated to True if it has some sort of content. Any

string is True, except empty strings. Any number is True, except 0.

Any list, tuple, set, and dictionary are True, except empty ones.

Example

The following will return True:

bool("abc")

bool(123)

bool(["apple", "cherry", "banana"])

Some Values are False

In fact, there are not many values that evaluate to False, except empty

values, such as (), [], {}, "", the number 0, and the value None. And of

course the value False evaluates to False.

Example

The following will return False:

bool(False)

bool(None)

bool(0)

bool("")

bool(())

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

bool([])

bool({})

One more value, or object in this case, evaluates to False, and that is if you

have an object that is made from a class with a __len__ function that

returns 0 or False:

Example

class myclass():

 def __len__(self):

 return 0

myobj = myclass()

print(bool(myobj))

Functions can Return a Boolean

You can create functions that returns a Boolean Value:

Example

Print the answer of a function:

def myFunction() :

 return True

print(myFunction())

You can execute code based on the Boolean answer of a function:

Example

Print "YES!" if the function returns True, otherwise print "NO!":

def myFunction() :

 return True

if myFunction():

 print("YES!")

else:

 print("NO!")

Python also has many built-in functions that return a boolean value, like

the isinstance() function, which can be used to determine if an object is of

a certain data type:

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Example

Check if an object is an integer or not:

x = 200

print(isinstance(x, int))

Python Operators

Operators are used to perform operations on variables and values.

In the example below, we use the + operator to add together two values:

Example

print(10 + 5)

Python divides the operators in the following groups:

 Arithmetic operators

 Assignment operators

 Comparison operators

 Logical operators

 Identity operators

 Membership operators

 Bitwise operators

Python Arithmetic Operators

Arithmetic operators are used with numeric values to perform common

mathematical operations:

Operator Name Example

+ Addition x + y

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

- Subtraction x - y

* Multiplication x * y

/ Division x / y

% Modulus x % y

** Exponentiation x ** y

// Floor division x // y

Python Assignment Operators

Assignment operators are used to assign values to variables:

Operator Example Same As

= x = 5 x = 5

+= x += 3 x = x + 3

-= x -= 3 x = x - 3

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

*= x *= 3 x = x * 3

/= x /= 3 x = x / 3

%= x %= 3 x = x % 3

//= x //= 3 x = x // 3

**= x **= 3 x = x ** 3

&= x &= 3 x = x & 3

|= x |= 3 x = x | 3

^= x ^= 3 x = x ^ 3

>>= x >>= 3 x = x >> 3

<<= x <<= 3 x = x << 3

Python Comparison Operators

Comparison operators are used to compare two values:

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Operator Name Example

== Equal x == y

!= Not equal x != y

> Greater than x > y

< Less than x < y

>= Greater than or equal to x >= y

<= Less than or equal to x <= y

Python Logical Operators

Logical operators are used to combine conditional statements:

Operator Description Example

and Returns True if both statements are

true

x < 5 and x < 10

or Returns True if one of the statements

is true

x < 5 or x < 4

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

not Reverse the result, returns False if the

result is true

not(x < 5 and x <

10)

Python Identity Operators

Identity operators are used to compare the objects, not if they are equal, but

if they are actually the same object, with the same memory location:

Operator Description Example

is Returns True if both variables are the

same object

x is y

is not Returns True if both variables are not the

same object

x is not y

Python Membership Operators

Membership operators are used to test if a sequence is presented in an

object:

Operator Description Example

in Returns True if a sequence with the specified

value is present in the object

x in y

not in Returns True if a sequence with the specified

value is not present in the object

x not in y

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Python Bitwise Operators

Bitwise operators are used to compare (binary) numbers:

Operator Name Description

& AND Sets each bit to 1 if both bits are 1

| OR Sets each bit to 1 if one of two bits is 1

 ^ XOR Sets each bit to 1 if only one of two bits is 1

~ NOT Inverts all the bits

<< Zero fill left

shift

Shift left by pushing zeros in from the right and let the

leftmost bits fall off

>> Signed

right shift

Shift right by pushing copies of the leftmost bit in from

the left, and let the rightmost bits fall off

Python Conditions and If statements

Python supports the usual logical conditions from mathematics:

 Equals: a == b

 Not Equals: a != b

 Less than: a < b

 Less than or equal to: a <= b

 Greater than: a > b

 Greater than or equal to: a >= b

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

These conditions can be used in several ways, most commonly in "if

statements" and loops.

An "if statement" is written by using the if keyword.

Example

If statement:

a = 33

b = 200

if b > a:

 print("b is greater than a")

In this example we use two variables, a and b, which are used as part of the

if statement to test whether b is greater than a. As a is 33, and b is 200, we

know that 200 is greater than 33, and so we print to screen that "b is greater

than a".

Indentation

Python relies on indentation (whitespace at the beginning of a line) to

define scope in the code. Other programming languages often use curly-

brackets for this purpose.

Example

If statement, without indentation (will raise an error):

a = 33

b = 200

if b > a:

print("b is greater than a") # you will get an error

Elif

The elif keyword is pythons way of saying "if the previous conditions were

not true, then try this condition".

Example

a = 33

b = 33

if b > a:

 print("b is greater than a")

elif a == b:

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

 print("a and b are equal")

In this example a is equal to b, so the first condition is not true, but

the elif condition is true, so we print to screen that "a and b are equal".

Else

The else keyword catches anything which isn't caught by the preceding

conditions.

Example

a = 200

b = 33

if b > a:

 print("b is greater than a")

elif a == b:

 print("a and b are equal")

else:

 print("a is greater than b")

In this example a is greater than b, so the first condition is not true, also

the elif condition is not true, so we go to the else condition and print to

screen that "a is greater than b".

You can also have an else without the elif:

Example

a = 200

b = 33

if b > a:

 print("b is greater than a")

else:

 print("b is not greater than a")

Short Hand If

If you have only one statement to execute, you can put it on the same line

as the if statement.

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Example

One line if statement:

if a > b: print("a is greater than b")

Short Hand If ... Else

If you have only one statement to execute, one for if, and one for else, you

can put it all on the same line:

Example

One line if else statement:

a = 2

b = 330

print("A") if a > b else print("B")

This technique is known as Ternary Operators, or Conditional

Expressions.

You can also have multiple else statements on the same line:

Example

One line if else statement, with 3 conditions:

a = 330

b = 330

print("A") if a > b else print("=") if a ==

b else print("B")

And

The and keyword is a logical operator, and is used to combine conditional

statements:

Example

Test if a is greater than b, AND if c is greater than a:

a = 200

b = 33

c = 500

if a > b and c > a:

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

 print("Both conditions are True")

Or

The or keyword is a logical operator, and is used to combine conditional

statements:

Example

Test if a is greater than b, OR if a is greater than c:

a = 200

b = 33

c = 500

if a > b or a > c:

 print("At least one of the conditions is True")

Nested If

You can have if statements inside if statements, this is

called nested if statements.

Example

x = 41

if x > 10:

 print("Above ten,")

 if x > 20:

 print("and also above 20!")

 else:

 print("but not above 20.")

The pass Statement

if statements cannot be empty, but if you for some reason have

an if statement with no content, put in the pass statement to avoid getting

an error.

Example

a = 33

b = 200

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

if b > a:

 pass

Python Loops

Python has two primitive loop commands:

 while loops

 for loops

The while Loop

With the while loop we can execute a set of statements as long as a

condition is true.

Example

Print i as long as i is less than 6:

i = 1

while i < 6:

 print(i)

 i += 1

Note: remember to increment i, or else the loop will continue forever.

The while loop requires relevant variables to be ready, in this example we

need to define an indexing variable, i, which we set to 1.

The break Statement

With the break statement we can stop the loop even if the while condition

is true:

Example

Exit the loop when i is 3:

i = 1

while i < 6:

 print(i)

 if i == 3:

 break

 i += 1

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

The continue Statement

With the continue statement we can stop the current iteration, and continue

with the next:

Example

Continue to the next iteration if i is 3:

i = 0

while i < 6:

 i += 1

 if i == 3:

 continue

 print(i)

The else Statement

With the else statement we can run a block of code once when the

condition no longer is true:

Example

Print a message once the condition is false:

i = 1

while i < 6:

 print(i)

 i += 1

else:

 print("i is no longer less than 6")

Python For Loops

A for loop is used for iterating over a sequence (that is either a list, a tuple,

a dictionary, a set, or a string).

This is less like the for keyword in other programming languages, and

works more like an iterator method as found in other object-orientated

programming languages.

With the for loop we can execute a set of statements, once for each item in

a list, tuple, set etc.

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Example

Print each fruit in a fruit list:

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 print(x)

The for loop does not require an indexing variable to set beforehand.

Looping Through a String

Even strings are iterable objects, they contain a sequence of characters:

Example

Loop through the letters in the word "banana":

for x in "banana":

 print(x)

The break Statement

With the break statement we can stop the loop before it has looped through

all the items:

Example

Exit the loop when x is "banana":

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 print(x)

 if x == "banana":

 break

Example

Exit the loop when x is "banana", but this time the break comes before the

print:

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 if x == "banana":

 break

 print(x)

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

The continue Statement

With the continue statement we can stop the current iteration of the loop,

and continue with the next:

Example

Do not print banana:

fruits = ["apple", "banana", "cherry"]

for x in fruits:

 if x == "banana":

 continue

 print(x)

The range() Function

To loop through a set of code a specified number of times, we can use

the range() function,

The range() function returns a sequence of numbers, starting from 0 by

default, and increments by 1 (by default), and ends at a specified number.

Example

Using the range() function:

for x in range(6):

 print(x)

Note that range(6) is not the values of 0 to 6, but the values 0 to 5.

The range() function defaults to 0 as a starting value, however it is possible

to specify the starting value by adding a parameter: range(2, 6), which

means values from 2 to 6 (but not including 6):

Example

Using the start parameter:

for x in range(2, 6):

 print(x)

The range() function defaults to increment the sequence by 1, however it

is possible to specify the increment value by adding a third

parameter: range(2, 30, 3):

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Example

Increment the sequence with 3 (default is 1):

for x in range(2, 30, 3):

 print(x)

Else in For Loop

The else keyword in a for loop specifies a block of code to be executed

when the loop is finished:

Example

Print all numbers from 0 to 5, and print a message when the loop has ended:

for x in range(6):

 print(x)

else:

 print("Finally finished!")

Note: The else block will NOT be executed if the loop is stopped by

a break statement.

Example

Break the loop when x is 3, and see what happens with the else block:

for x in range(6):

 if x == 3: break

 print(x)

else:

 print("Finally finished!")

Nested Loops

A nested loop is a loop inside a loop.

The "inner loop" will be executed one time for each iteration of the "outer

loop":

Example

Print each adjective for every fruit:

adj = ["red", "big", "tasty"]

fruits = ["apple", "banana", "cherry"]

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

for x in adj:

 for y in fruits:

 print(x, y)

The pass Statement

for loops cannot be empty, but if you for some reason have a for loop with

no content, put in the pass statement to avoid getting an error.

Example

for x in [0, 1, 2]:

 pass

Python Functions

A function is a block of code which only runs when it is called. You can

pass data, known as parameters, into a function. A function can return data

as a result.

Creating a Function

In Python a function is defined using the def keyword:

Example

def my_function():

 print("Hello from a function")

Calling a Function

To call a function, use the function name followed by parenthesis:

Example

def my_function():

 print("Hello from a function")

my_function()

Arguments

Information can be passed into functions as arguments.

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Arguments are specified after the function name, inside the parentheses.

You can add as many arguments as you want, just separate them with a

comma.

The following example has a function with one argument (fname). When

the function is called, we pass along a first name, which is used inside the

function to print the full name:

Example

def my_function(fname):

 print(fname + " Refsnes")

my_function("Emil")

my_function("Tobias")

my_function("Linus")

Arguments are often shortened to args in Python documentations.

Parameters or Arguments?

The terms parameter and argument can be used for the same thing:

information that are passed into a function.

From a function's perspective:

A parameter is the variable listed inside the parentheses in the function

definition.

An argument is the value that is sent to the function when it is called.

Number of Arguments

By default, a function must be called with the correct number of arguments.

Meaning that if your function expects 2 arguments, you have to call the

function with 2 arguments, not more, and not less.

Example

This function expects 2 arguments, and gets 2 arguments:

def my_function(fname, lname):

 print(fname + " " + lname)

my_function("Emil", "Refsnes")

If you try to call the function with 1 or 3 arguments, you will get an error:

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Example

This function expects 2 arguments, but gets only 1:

def my_function(fname, lname):

 print(fname + " " + lname)

my_function("Emil")

Arbitrary Arguments, *args

If you do not know how many arguments that will be passed into your

function, add a * before the parameter name in the function definition.

This way the function will receive a tuple of arguments, and can access the

items accordingly:

Example

If the number of arguments is unknown, add a * before the parameter

name:

def my_function(*kids):

 print("The youngest child is " + kids[2])

my_function("Emil", "Tobias", "Linus")

Arbitrary Arguments are often shortened to *args in Python

documentations.

Keyword Arguments

You can also send arguments with the key = value syntax. This way the

order of the arguments does not matter.

Example

def my_function(child3, child2, child1):

 print("The youngest child is " + child3)

my_function(child1 = "Emil", child2 = "Tobias",

child3 = "Linus")

The phrase Keyword Arguments are often shortened to kwargs in Python

documentations.

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Arbitrary Keyword Arguments, **kwargs

If you do not know how many keyword arguments that will be passed into

your function, add two asterisk: ** before the parameter name in the

function definition.

This way the function will receive a dictionary of arguments, and can

access the items accordingly:

Example

If the number of keyword arguments is unknown, add a double ** before

the parameter name:

def my_function(**kid):

 print("His last name is " + kid["lname"])

my_function(fname = "Tobias", lname = "Refsnes")

Arbitrary Kword Arguments are often shortened to **kwargs in Python

documentations.

Default Parameter Value

The following example shows how to use a default parameter value.

If we call the function without argument, it uses the default value:

Example

def my_function(country = "Norway"):

 print("I am from " + country)

my_function("Sweden")

my_function("India")

my_function()

my_function("Brazil")

Passing a List as an Argument

You can send any data types of argument to a function (string, number, list,

dictionary etc.), and it will be treated as the same data type inside the

function.

E.g. if you send a List as an argument, it will still be a List when it reaches

the function:

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Example

def my_function(food):

 for x in food:

 print(x)

fruits = ["apple", "banana", "cherry"]

my_function(fruits)

Return Values

To let a function return a value, use the return statement:

Example

def my_function(x):

 return 5 * x

print(my_function(3))

print(my_function(5))

print(my_function(9))

The pass Statement

function definitions cannot be empty, but if you for some reason have

a function definition with no content, put in the pass statement to avoid

getting an error.

Example

def myfunction():

 pass

Recursion

Python also accepts function recursion, which means a defined function

can call itself.

Recursion is a common mathematical and programming concept. It means

that a function calls itself. This has the benefit of meaning that you can

loop through data to reach a result.

The developer should be very careful with recursion as it can be quite easy

to slip into writing a function which never terminates, or one that uses

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

excess amounts of memory or processor power. However, when written

correctly recursion can be a very efficient and mathematically-elegant

approach to programming.

In this example, tri_recursion() is a function that we have defined to call

itself ("recurse"). We use the k variable as the data, which decrements (-1)

every time we recurse. The recursion ends when the condition is not greater

than 0 (i.e. when it is 0).

To a new developer it can take some time to work out how exactly this

works, best way to find out is by testing and modifying it.

Example

Recursion Example

def tri_recursion(k):

 if(k > 0):

 result = k + tri_recursion(k - 1)

 print(result)

 else:

 result = 0

 return result

print("\n\nRecursion Example Results")

tri_recursion(6)

Python Lambda

A lambda function is a small anonymous function. A lambda function can

take any number of arguments, but can only have one expression.

Syntax

lambda arguments : expression

The expression is executed and the result is returned:

Example

Add 10 to argument a, and return the result:

x = lambda a : a + 10

print(x(5))

Lambda functions can take any number of arguments:

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Example

Multiply argument a with argument b and return the result:

x = lambda a, b : a * b

print(x(5, 6))

Example

Summarize argument a, b, and c and return the result:

x = lambda a, b, c : a + b + c

print(x(5, 6, 2))

Why Use Lambda Functions?

The power of lambda is better shown when you use them as an anonymous

function inside another function.

Say you have a function definition that takes one argument, and that

argument will be multiplied with an unknown number:

def myfunc(n):

 return lambda a : a * n

Use that function definition to make a function that always doubles the

number you send in:

Example

def myfunc(n):

 return lambda a : a * n

mydoubler = myfunc(2)

print(mydoubler(11))

Or, use the same function definition to make a function that

always triples the number you send in:

Example

def myfunc(n):

 return lambda a : a * n

mytripler = myfunc(3)

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

print(mytripler(11))

Or, use the same function definition to make both functions, in the same

program:

Example

def myfunc(n):

 return lambda a : a * n

mydoubler = myfunc(2)

mytripler = myfunc(3)

print(mydoubler(11))

print(mytripler(11))

Use lambda functions when an anonymous function is required for a short

period of time.

Arrays

Note: This page shows you how to use LISTS as ARRAYS, however, to

work with arrays in Python you will have to import a library, like

the NumPy library.

Arrays are used to store multiple values in one single variable:

Example

Create an array containing car names:

cars = ["Ford", "Volvo", "BMW"]

What is an Array?

An array is a special variable, which can hold more than one value at a

time.

If you have a list of items (a list of car names, for example), storing the

cars in single variables could look like this:

car1 = "Ford"

car2 = "Volvo"

car3 = "BMW"

https://www.w3schools.com/python/numpy/default.asp

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

However, what if you want to loop through the cars and find a specific one?

And what if you had not 3 cars, but 300?

The solution is an array!

An array can hold many values under a single name, and you can access

the values by referring to an index number.

Access the Elements of an Array

You refer to an array element by referring to the index number.

Example

Get the value of the first array item:

x = cars[0]

Example

Modify the value of the first array item:

cars[0] = "Toyota"

The Length of an Array

Use the len() method to return the length of an array (the number of

elements in an array).

Example

Return the number of elements in the cars array:

x = len(cars)

Note: The length of an array is always one more than the highest array

index.

Looping Array Elements

You can use the for in loop to loop through all the elements of an array.

Example

Print each item in the cars array:

for x in cars:

 print(x)

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Adding Array Elements

You can use the append() method to add an element to an array.

Example

Add one more element to the cars array:

cars.append("Honda")

Removing Array Elements

You can use the pop() method to remove an element from the array.

Example

Delete the second element of the cars array:

cars.pop(1)

You can also use the remove() method to remove an element from the

array.

Example

Delete the element that has the value "Volvo":

cars.remove("Volvo")

Note: The list's remove() method only removes the first occurrence of the

specified value.

Array Methods

Python has a set of built-in methods that you can use on lists/arrays.

Method Description

append() Adds an element at the end of the list

clear() Removes all the elements from the list

https://www.w3schools.com/python/ref_list_append.asp
https://www.w3schools.com/python/ref_list_clear.asp

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

copy() Returns a copy of the list

count() Returns the number of elements with the specified value

extend() Add the elements of a list (or any iterable), to the end of the

current list

index() Returns the index of the first element with the specified value

insert() Adds an element at the specified position

pop() Removes the element at the specified position

remove() Removes the first item with the specified value

reverse() Reverses the order of the list

sort() Sorts the list

Note: Python does not have built-in support for Arrays, but Python Lists

can be used instead.

https://www.w3schools.com/python/ref_list_copy.asp
https://www.w3schools.com/python/ref_list_count.asp
https://www.w3schools.com/python/ref_list_extend.asp
https://www.w3schools.com/python/ref_list_index.asp
https://www.w3schools.com/python/ref_list_insert.asp
https://www.w3schools.com/python/ref_list_pop.asp
https://www.w3schools.com/python/ref_list_remove.asp
https://www.w3schools.com/python/ref_list_reverse.asp
https://www.w3schools.com/python/ref_list_sort.asp

	Python Fundamental Introduction
	What is Python?
	What can Python do?
	Why Python?
	Python Syntax compared to other programming languages
	Example
	Python Indentation
	Example
	Example
	Example
	Example

	Python Variables
	Example
	Comments
	Creating a Comment
	Example
	Example
	Example
	Multi Line Comments
	Example
	Example
	Variables

	Creating Variables
	Example
	Example

	Casting
	Example

	Get the Type
	Example

	Single or Double Quotes?
	Example

	Case-Sensitive
	Example

	Variable Names
	Example
	Example

	Multi Words Variable Names
	Camel Case
	Pascal Case
	Snake Case
	Many Values to Multiple Variables
	Example

	One Value to Multiple Variables
	Example

	Unpack a Collection
	Example

	Output Variables
	Example
	Example
	Example
	Example
	Example
	Example

	Python Data Types
	Built-in Data Types
	Getting the Data Type
	Example

	Python Numbers
	Example
	Example

	Int
	Example

	Float
	Example
	Example

	Complex
	Example

	Type Conversion
	Example

	Random Number
	Example

	Strings
	Example

	Assign String to a Variable
	Example

	Multiline Strings
	Example
	Example

	Strings are Arrays
	Example

	Looping Through a String
	Example

	String Length
	Example

	Check String
	Example
	Example

	Check if NOT
	Example
	Example

	Slicing String
	Example

	Slice From the Start
	Example

	Slice To the End
	Example

	Negative Indexing
	Example

	Python - Modify Strings
	Upper Case
	Example

	Lower Case
	Example

	Remove Whitespace
	Example

	Replace String
	Example

	Split String
	Example

	String Concatenation
	Example
	Example

	String Format
	Example
	Example
	Example
	Example

	Boolean Values
	Example
	Example

	Evaluate Values and Variables
	Example
	Example

	Most Values are True
	Example

	Some Values are False
	Example
	Example

	Functions can Return a Boolean
	Example
	Example
	Example

	Python Operators
	Example

	Python Arithmetic Operators
	Python Assignment Operators
	Python Comparison Operators
	Python Logical Operators
	Python Identity Operators
	Python Membership Operators
	Python Bitwise Operators
	Python Conditions and If statements
	Example

	Indentation
	Example

	Elif
	Example

	Else
	Example
	Example

	Short Hand If
	Example

	Short Hand If ... Else
	Example
	Example

	And
	Example

	Or
	Example

	Nested If
	Example

	The pass Statement
	Example

	Python Loops
	The while Loop
	Example

	The break Statement
	Example

	The continue Statement
	Example

	The else Statement
	Example

	Python For Loops
	Example

	Looping Through a String
	Example

	The break Statement
	Example
	Example

	The continue Statement
	Example

	The range() Function
	Example
	Example
	Example

	Else in For Loop
	Example
	Example

	Nested Loops
	Example

	The pass Statement
	Example

	Python Functions
	Creating a Function
	Example

	Calling a Function
	Example

	Arguments
	Example

	Parameters or Arguments?
	Number of Arguments
	Example
	Example

	Arbitrary Arguments, *args
	Example

	Keyword Arguments
	Example

	Arbitrary Keyword Arguments, **kwargs
	Example

	Default Parameter Value
	Example

	Passing a List as an Argument
	Example

	Return Values
	Example

	The pass Statement
	Example

	Recursion
	Example

	Python Lambda
	Syntax
	Example
	Example
	Example

	Why Use Lambda Functions?
	Example
	Example
	Example

	Arrays
	Example

	What is an Array?
	Access the Elements of an Array
	Example
	Example

	The Length of an Array
	Example

	Looping Array Elements
	Example

	Adding Array Elements
	Example

	Removing Array Elements
	Example
	Example

	Array Methods

