
Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022 -2023

 جامعة الانبار

 كلية علوم الحاسوب وتكنولوجيا المعلومات

 قسم أنظمة شبكات الحاسوب

 OOPكيانية برمجة

 ثانيةالمرحلة ال

 الأول والثاني الفصل الدراسي

 مدرس المادة

 م.د. سميه عبدالله حمد

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Lambda Functions

Although Python is an object-oriented programming language, lambda

functions are handy when you are doing various kinds of functional

programming.

In Python, functions can take in one or more positional or keyword

arguments, a variable list of arguments, a variable list of keyword

arguments, and so on. They can be passed into a higher-order function and

returned as output. Regular functions can have several expressions and

multiple statements. They also always have a name.

A Python lambda function is simply an anonymous function. It could also

be called a nameless function. Normal Python functions are defined by the

def keyword.

Lambda functions in Python are usually composed of the lambda keyword,

any number of arguments, and one expression.

Lambda functions are mostly used as one-liners. They are used very often

within higher-order functions like map() and filter(). This is because

anonymous functions are passed as arguments to higher-order functions,

which is not only done in Python programming.

Because Python is an object-oriented programming language, everything

is an object. Python classes, class instances, modules and functions are all

handled as objects.

A function object can be assigned to a variable. It is common to assign

variables to regular functions in Python. This behavior can also be applied

to lambda functions. This is because they are function objects, even though

they are nameless:

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

def greet(name):

 return f'Hello {name}'

greetings = greet

greetings('Clint')

>>>>

Hello Clint

Higher-order functions like map(), filter(), and reduce)(

It’s likely you’ll need to use a lambda function within built-in functions

such as filter() and map(), and also with reduce() — which is imported from

the functools module in Python, because it’s not a built-in function. By

default, higher-order functions are functions that receive other

functions as arguments.

As seen in the code examples below, the normal functions can be replaced

with lambdas, passed as arguments into any of these higher-order

functions:

#map function

names = ['Clint', 'Lisa', 'Asake', 'Ada']

greet_all = list(map(greet, names))

print(greet_all)

>>>>

['Hello Clint', 'Hello Lisa', 'Hello Asake', 'Hello Ada']

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

#filter function

numbers = [11, 12, 13, 14, 15, 16, 17, 18, 19, 20]

def multiples_of_three(x):

 return x % 3 == 0

print(list(filter(multiples_of_three, numbers)))

>>>>

[12, 15, 18]

#reduce function

numbers =[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]

def add_numbers(x, y):

 return x + y

print(reduce(add_numbers, numbers))

>>>>

55

The difference between a statement and an expression

A common point of confusion amongst developers is differentiating

between a statement and an expression in programming.

- A statement is any piece of code that does something or performs an

action such as if or while conditions.

- An expression is made of a combination of variables, values, and

operators and evaluates to a new value.

This distinction is important as we explore the subject of lambda functions

in Python. An expression like the one below returns a value:

square_of_three = 3 ** 2

print(square_of_three)

>>>>

9

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

A statement looks like this:

for i in range(len(numbers) , 0, -1):

 if i % 2 == 1:

 print(i)

 else:

 print('even')

>>>>

even 9 even 7 even 5 even 3 even 1

How to Use Python Lambda Functions

The Python lambda function must begin with the keyword lambda (unlike

normal functions, which begin with the def keyword). The syntax for a

lambda function generally goes like this:

lambda arguments : expression

Lambda functions can take any number of positional arguments, keyword

arguments, or both, followed by a colon and only one expression. There

cannot be more than one expression, as it is syntactically restricted. Let’s

examine an example of a lambda expression below:

add_number = lambda x, y : x + y

print (add_number(10, 4))

>>>>

14

From the example above, the lambda expression is assigned to the variable

add_number. A function call is made by passing arguments, which

evaluates to 14.

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Let’s take another example below:

discounted_price = lambda price, discount = 0.1, vat = 0.02 : price * (1 -

discount) * (1 + vat)

print(discounted_price(1000, vat=0.04, discount=0.3))

>>>>

728.0

As seen above, the lambda function evaluates to 728.0. A combination of

positional and keyword arguments are used in the Python lambda function.

While using positional arguments, we cannot alter the order outlined in the

function definition. However, we can place keyword arguments at any

position only after the positional arguments.

This is mostly used with a Python interpreter, as shown in the following

example:

print((lambda x, y: x - y)(45, 18))

>>>>

27

The lambda function object is wrapped within parentheses, and another

pair of parentheses follows closely with arguments passed. The expression

is evaluated and the function returns a value that is assigned to the variable.

Python lambda functions can also be executed within a list comprehension.

A list comprehension always has an output expression, which is replaced

by a lambda function. Here are some examples:

my_list = [(lambda x: x * 2)(x) for x in range(10) if x % 2 == 0]

print(my_list)

>>>>

[0, 4, 8, 12, 16]

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

value = [(lambda x: x % 2 and 'odd' or 'even')(x) for x in my_list]

print(value)

>>>>

]'even', 'even', 'even', 'even', 'even '[

Lambda functions can be used when writing ternary expressions in Python.

A ternary expression outputs a result based on a given condition. Check

out the examples below:

test_condition1 = lambda x: x / 5 if x > 10 else x + 5

print(test_condition1(9))

>>>>

14

test_condition2 = lambda x: f'{x} is even' if x % 2 == 0 else (lambda

x: f'{x} is odd')(x)

print(test_condition2(9))

>>>>

9 is odd

Lambda functions within higher-order functions

The concept of higher-order functions is popular in Python, just as in other

languages. They are functions that accept other functions as arguments and

also return functions as output.

In Python, a higher-order function takes two arguments: a function, and an

iterable. The function argument is applied to each item in the iterable

object. Since we can pass a function as an argument to a higher-order

function, we can equally pass in a lambda function.

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Here are some examples of a lambda function used with the map()

function:

square_of_numbers = list(map(lambda x: x ** 2, range(10)))

print(square_of_numbers)

>>>>

[0, 1, 4, 9, 16, 25, 36, 49, 64, 81]

strings = ['Nigeria', 'Ghana', 'Niger', 'Kenya', 'Ethiopia', 'South

Africa', 'Tanzania', 'Egypt', 'Morocco', 'Uganda']

length_of_strings = list(map(lambda x: len(x), strings))

print(length_of_strings)

>>>>

[7, 5, 5, 5, 8, 12, 8, 5, 7, 6]

Here are some lambda functions used with the filter() function:

length_of_strings_above_five = list(filter(lambda x: len(x) > 5, strings))

print(length_of_strings_above_five)

>>>>

]' Nigeria', 'Ethiopia', 'South Africa', 'Tanzania', 'Morocco', 'Uganda '[

fruits_numbers_alphanumerics = ['apple', '123', 'python3', '4567', 'mango',

'orange', 'web3', 'banana', '890']

fruits = list(filter(lambda x: x.isalpha(), fruits_numbers_alphanumerics))

numbers = list(filter(lambda x: x.isnumeric(),

fruits_numbers_alphanumerics))

print(fruits)

print(numbers)

>>>>

]'apple', 'mango', 'orange', 'banana '[

['123', '4567', '890']

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Here are some lambda functions used with the reduce() function:

values= [13, 6, 12, 23, 15, 31, 16, 21]

max_value = reduce(lambda x,y: x if (x > y) else y, values)

print(max_value)

>>>>

31

Nums=[1, 2, 3, 4, 5, 6]

multiplication_of_nums = reduce(lambda x,y: x*y, nums)

print(multiplication_of_nums)

>>>>

720

Conclusion

Although Python lambdas can significantly reduce the number of lines of

code you write, they should be used sparingly and only when necessary.

The readability of your code should be prioritized over conciseness. For

more readable code, always use a normal function where suited over

lambda functions, as recommended by the Python Style Guide.

Lambdas can be very handy with Python ternary expressions, but again, try

not to sacrifice readability. Lambda functions really come into their own

when higher-order functions are being used.

In summary:

Python lambdas are good for writing one-liner functions.

Lambdas should not be used when there are multiple expressions, as it

makes code unreadable.

Python is an object-oriented programming language, but lambdas are a

good way to explore functional programming in Python.

