
Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022 -2023

 جامعة الانبار

 كلية علوم الحاسوب وتكنولوجيا المعلومات

 قسم أنظمة شبكات الحاسوب

 OOPكيانية برمجة

 ثانيةالمرحلة ال

 الأول والثاني الفصل الدراسي

 مدرس المادة

 م.د. سميه عبدالله حمد

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Function Overloading in Python

In python, function overloading is defined as the ability of the function to behave in

different ways depend on the number of parameters passed to it like zero, one, two

which will depend on how function is defined. Overloading function provides code

reusability, removes complexity and improves code clarity to the users who will use

or work on it. Function overloading in python can be of two types one is overloading

built-in functions and overloading the custom or user-defined functions in python. We

will have a look into both of them in the below sections. In general, not every

programming language supports function overloading but in this case, python

supports functional overloading.

Syntax of Function Overloading in Python

The syntax and example is as follows:

Syntax:

In python, we can define a method in such a way that it can be called in different ways

using different numbers of parameters. We will see a function overloading example

which can take zero or one argument and its syntax as below:

Example:

class World:

 def hello(self, name=None):

 if name is not None:

 print (“Hello “, name)

 else:

 print(“Hello”)

obj = World # calling function without any argument

obj.hello(“srinivas”) # calling function with an argument.

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

In the above syntax example, we have created a class World with a method/function

hello where we set the first argument is None so that we can call the function with or

without an argument. We have created an obj of the class World and using this obj

we will call its method using zero or one argument. In order to see how function

overloading is working, we will call the function with zero parameters as obj.hello()

and with one parameter as obj.hello(“srinivas”) and the output of the above program

is as below. The above example is having up to one variable but it is not limited to it

we can have a number of parameters.

Output:

Hello

How Function Overloading Works in Python?

Let us see how overloading of functions works in python using an example as

below. Let us have a function to calculate the area of square and rectangle.

Code:

def area(l, b):

 c = l*b

 return c

def area(size):

 c = size*size

 return c

area(4)

area(5,6)

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Output:

Traceback (most recent call last):

 File "C:/Users/PC/AppData/Local/Programs/Python/Python37/x.py", line 8, in

<module>

 area(5,6)

TypeError: area() takes 1 positional argument but 2 were given

In python, when we define two functions with the same name than the function which

we defined later only a valid function in python. So when we execute area(4) it

executes properly but when we execute area(5,6) gives an error saying function area()

takes exactly one argument. So by default function overloading is not there in python

but it can be achieved using decorators, defining functions by setting parameters

default values to None.

Let us have an example of function overloading by defining a function with default

parameter values as None.

Code:

class Compute:

 def area(self, x=None, y=None):

 if x!=None and y !=None:

 return x*y

 elif x!=None:

 return x*x

 else:

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

 return 0

obj = Compute()

print(obj.area())

print(obj.area(6))

print(obj.area(2,8))

Output:

0

36

16

In the above example, we have defined a class Compute with a function named the

area where we have default parameter values as None so that the function can be

called either with zero, one, and two parameters. If we have one argument then the

area function will return zero as its output, if it has one parameter then the area

function returns the square of the parameter, and if it has two parameters then the area

function will return the product of two parameters as output. We have created an obj

for the class Compute by which we can access the function area() with different

parameters. Here we called obj.area() which gives output as 0, obj.area(6) gives the

output as 36, and obj.area(2,8) gives output as 16 which is the product of 2 and 8.

Now we will see built-in function overloading with an example of overloading the

len() function as below:

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Built-in Function Overloading

Code:

class Purchase:

 def __init__(self, basket, consumer):

 self.basket= list(basket)

 self.consumer= consumer

 def __len__(self):

 return 10

purchase = Purchase(['pencil','book'],'python')

print(len(purchase))In the above example, we defined a class Purchase where it has

constructor __init__ with parameters basket which is a list and consumer is a string

variable and assigning to the self. We have a function __len__ which is overriding the

built-in len() function of python. We have created an object purchase of class

Purchase with parameters that will be initialized. When we execute the print statement

in which we are calling len(purchase) will return 10 as we overloaded the built-in

len() function of python. If it calls built-in len() function it will throw an error as an

object doesn’t have any len() function.

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Output:

The above program when function overloading successes:

10

The output of the above program, if we didn’t perform function overloading is an

error:

TypeError: object of type ‘purchase’ doesn’t have len().

Example of Function Overloading in Python

Let us have an example of a class student having a function hello with a parameter

name having default value as None as below:

Example #1

Code:

class Student:

 def sayHello(self, name=None):

 if name is not None:

 self.name = name

 print("Hey, " , name)

 else:

 print("Hey")

stu = Student()

stu.sayHello()

stu.sayHello('dasu')

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

In the above example, we have a class Student with a function sayHello() where

default parameter value is set to None so that the function can be called with either

zero, one parameter but not limited to them. We have created an stu of class Student

by which we can access the function sayHello(). While calling stu.sayHello() output

of it will be “hey”, and while calling stu.sayHello(“dasu”) output of it will be “hey

dasu”.

Output:

Hey

Hey, dasu

