
Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022 -2023

 جامعة الانبار

 كلية علوم الحاسوب وتكنولوجيا المعلومات

 قسم أنظمة شبكات الحاسوب

 OOPكيانية برمجة

 ثانيةالمرحلة ال

 الأول والثاني الفصل الدراسي

 مدرس المادة

 م.د. سميه عبدالله حمد

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

Passing Objects (Classes) to Functions

Objects as Arguments and Parameters

You can pass an object as an argument to a function, in the usual way.

Here is a simple function called distance involving our new Point objects.

The job of this function is to figure out the distance between two points.

import math

class Point:

 """ Point class for representing and manipulating x,y

coordinates. """

 def __init__(self, initX, initY):

 self.x = initX

 self.y = initY

 def getX(self):

 return self.x

 def getY(self):

 return self.y

def distance(point1, point2):

 xdiff = point2.getX()-point1.getX()

 ydiff = point2.getY()-point1.getY()

 dist = math.sqrt(xdiff**2 + ydiff**2)

 return dist

p = Point(4,3)

q = Point(0,0)

print(distance(p,q))

Output:

5.0

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

distance takes two points and returns the distance between them. Note

that distance is not a method of the Point class. You can see this by looking

at the indentation pattern. It is not inside the class definition. The other way

we can know that distance is not a method of Point is that self is not

included as a formal parameter. In addition, we do not

invoke distance using the dot notation.

We could have made distance be a method of the Point class. Then, we

would have called the first parameter self, and would have invoked it using

the dot notation, as in the following code. Which way to implement it is a

matter of coding style. Both work correctly. Most programmers choose

whether to make functions be stand-alone or methods of a class based on

whether the function semantically seems to be an operation that is

performed on instances of the class. In this case, because distance is really

a property of a pair of points and is symmetric (the distance from a to b is

the same as that from b to a) it makes more sense to have it be a standalone

function and not a method.

import math

class Point:

 """ Point class for representing and manipulating x,y

coordinates. """

 def __init__(self, initX, initY):

 self.x = initX

 self.y = initY

 def getX(self):

 return self.x

 def getY(self):

 return self.y

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

 def distance(self, point2):

 xdiff = point2.getX()-self.getX()

 ydiff = point2.getY()-self.getY()

 dist = math.sqrt(xdiff**2 + ydiff**2)

 return dist

p = Point(4,3)

q = Point(0,0)

print(p.distance(q))

Output:

5.0

Returning Objects (classes) From Functions

 Converting an Object to a String

When we’re working with classes and objects, it is often necessary to print

an object (that is to print the state of an object). Consider the example

below.

class Point:

 """ Point class for representing and manipulating x,y

coordinates. """

 def __init__(self, initX, initY):

 """ Create a new point at the given coordinates. """

 self.x = initX

 self.y = initY

 def getX(self):

 return self.x

 def getY(self):

 return self.y

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

p = Point(7, 6)

print(p)

Output:

<__main__.Point object>

The print function shown above produces a string representation of the

Point p. The default functionality provided by Python tells you that p is an

object of type Point. However, it does not tell you anything about the

specific state of the point.

We can improve on this representation if we include a special method

call __str__. Notice that this method uses the same naming convention as

the constructor, that is two underscores before and after the name. It is

common that Python uses this naming technique for special methods.

The __str__ method is responsible for returning a string representation as

defined by the class creator. In other words, you as the programmer, get to

choose what a Point should look like when it gets printed. In this case, we

have decided that the string representation will include the values of x and

y as well as some identifying text. It is required that the __str__ method

create and return a string.

class Point:

 """ Point class for representing and manipulating x,y

coordinates. """

 def __init__(self, initX, initY):

 """ Create a new point at the given coordinates. """

 self.x = initX

 self.y = initY

 def getX(self):

 return self.x

 def getY(self):

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

 return self.y

 def __str__(self):

 return "x=" + str(self.x) + ", y=" + str(self.y)

p = Point(7, 6)

print(p)

Output:

x=7, y=6

When we run the program above you can see that the print function now

shows the string that we chose.

As we saw earlier, these automatic mechanisms do not do exactly what we

want. Python provides many default implementations for methods that we

as programmers will probably want to change. When a programmer

changes the meaning of a special method we say that we override the

method. Note also that the str type converter function uses

whatever __str__ method we provide.

Also we can write __str__ method as:

def __str__(self):

 return "x = {}, y = {}".format(self.x, self.y)

 Instances as Return Values

Functions and methods can return objects. This is actually nothing new

since everything in Python is an object and we have been returning values

for quite some time. The difference here is that we want to have the method

create an object using the constructor and then return it as the value of the

method.

Suppose you have a point object and wish to find the midpoint halfway

between it and some other target point. We would like to write a method,

call it halfway that takes another Point as a parameter and returns

the Point that is halfway between the point and the target.

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

class Point:

 def __init__(self, initX, initY):

 """ Create a new point at the given coordinates. """

 self.x = initX

 self.y = initY

 def getX(self):

 return self.x

 def getY(self):

 return self.y

 def __str__(self):

 return "x=" + str(self.x) + ", y=" + str(self.y)

 def halfway(self, target):

 mx = (self.x + target.x) / 2

 my = (self.y + target.y) / 2

 return Point(mx, my)

p = Point(3, 4)

q = Point(5, 12)

mid = p.halfway(q)

print(mid)

print(mid.getX())

print(mid.getY())

Output:

x=4.0, y=8.0

4.0

8.0

The resulting Point, mid, has an x value of 4 and a y value of 8. We can

also use any other methods since mid is a Point object.

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022

In the definition of the method halfway see how the requirement to always

use dot notation with attributes disambiguates the meaning of the

attributes x and y: We can always see whether the coordinates of

Point self or target are being referred to.

