
Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022 -2023

 جامعة الانبار

 كلية علوم الحاسوب وتكنولوجيا المعلومات

 قسم أنظمة شبكات الحاسوب

 OOPكيانية برمجة

 ثانيةالمرحلة ال

 الأول والثاني الفصل الدراسي

 مدرس المادة

 م.د. سميه عبدالله حمد

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

Python - Public, Protected, Private Members

Classical object-oriented languages, such as C++ and Java, control the

access to class resources by public, private, and protected keywords.

Private members of the class are denied access from the environment

outside the class. They can be handled only from within the class.

Public Members

Public members (generally methods declared in a class) are accessible

from outside the class. The object of the same class is required to invoke

a public method. This arrangement of private instance variables and

public methods ensures the principle of data encapsulation.

All members in a Python class are public by default. Any member can

be accessed from outside the class environment.

Example: Public Attributes

class Student:

 schoolName = 'XYZ School' # class attribute

 def __init__(self, name, age):

 self.name=name # instance attribute

 self.age=age # instance attribute

You can access the Student class's attributes and also modify their

values, as shown below.

Example: Access Public Members

>>> std = Student("Steve", 25)

>>> std.schoolName

'XYZ School'

>>> std.name

'Steve'

>>> std.age = 20

>>> std.age

20

https://www.tutorialsteacher.com/python/python-class

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

Protected Members

Protected members of a class are accessible from within the class and are

also available to its sub-classes. No other environment is permitted

access to it. This enables specific resources of the parent class to be

inherited by the child class.

Python's convention to make an instance variable protected is to add a

prefix _ (single underscore) to it. This effectively prevents it from being

accessed unless it is from within a sub-class.

Example: Protected Attributes

class Student:

 _schoolName = 'XYZ School' # protected class attribute

 def __init__(self, name, age):

 self._name=name # protected instance attribute

 self._age=age # protected instance attribute

In fact, this doesn't prevent instance variables from accessing or

modifying the instance. You can still perform the following operations:

Example: Access Protected Members

>>> std = Student("Swati", 25)

>>> std._name

'Swati'

>>> std._name = 'Dipa'

>>> std._name

'Dipa'

However, you can define a property using property decorator and make

it protected, as shown below.

Example: Protected Attributes

class Student:

 def __init__(self,name):

 self._name = name

 @property

 def name(self):

 return self._name

https://www.tutorialsteacher.com/python/property-decorator

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

 @name.setter

 def name(self,newname):

 self._name = newname

Above, @property decorator is used to make the name() method as

property and @name.setter decorator to another overloads of

the name() method as property setter method. Now, _name is protected.

Example: Access Protected Members

>>> std = Student("Swati")

>>> std.name

'Swati'

>>> std.name = 'Dipa'

>>> std.name

'Dipa'

>>> std._name # still accessible

Above, we used std.name property to modify _name attribute. However,

it is still accessible in Python. Hence, the responsible programmer would

refrain from accessing and modifying instance variables prefixed

with _ from outside its class.

Private Members

Python doesn't have any mechanism that effectively restricts access to

any instance variable or method. Python prescribes a convention of

prefixing the name of the variable/method with a single or double

underscore to emulate the behavior of protected and private access

specifiers.

The double underscore __ prefixed to a variable makes it private. It

gives a strong suggestion not to touch it from outside the class. Any

attempt to do so will result in an AttributeError:

Example: Private Attributes

class Student:

 __schoolName = 'XYZ School' # private class attribute

 def __init__(self, name, age):

 self.__name=name # private instance attribute

 self.__salary=age # private instance attribute

 def __display(self): # private method

 print('This is private method.')

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

Example:

>>> std = Student("Bill", 25)

>>> std.__schoolName

AttributeError: 'Student' object has no attribute '__schoolName'

>>> std.__name

AttributeError: 'Student' object has no attribute '__name'

>>> std.__display()

AttributeError: 'Student' object has no attribute '__display'

Python performs name mangling of private variables. Every member

with a double underscore will be changed to _object._class__variable.

So, it can still be accessed from outside the class, but the practice should

be refrained.

Example:

>>> std = Student("Bill", 25)

>>> std._Student__name

'Bill'

>>> std._Student__name = 'Steve'

>>> std._Student__name

'Steve'

>>> std._Student__display()

'This is private method.'

Thus, Python provides conceptual implementation of public, protected,

and private access modifiers, but not like other languages like C#, Java,

C++.

https://www.tutorialsteacher.com/csharp

