
Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022 -2023

 جامعة الانبار

 كلية علوم الحاسوب وتكنولوجيا المعلومات

 قسم أنظمة شبكات الحاسوب

 OOPكيانية برمجة

 ثانيةالمرحلة ال

 الأول والثاني الفصل الدراسي

 مدرس المادة

 م.د. سميه عبدالله حمد

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

Inheritance in Python

One of the core concepts in object-oriented programming (OOP)

languages is inheritance. It is a mechanism that allows you to create a

hierarchy of classes that share a set of properties and methods by deriving

a class from another class. Inheritance is the capability of one class to

derive or inherit the properties from another class.

Benefits of inheritance are:

 It represents real-world relationships well.

 It provides the reusability of a code. We don’t have to write the same

code again and again. Also, it allows us to add more features to a class

without modifying it.

 It is transitive in nature, which means that if class B inherits from

another class A, then all the subclasses of B would automatically

inherit from class A.

 Inheritance offers a simple, understandable model structure.

 Less development and maintenance expenses result from an

inheritance.

Python Inheritance Syntax

Class BaseClass:

 {Body}

Class DerivedClass(BaseClass):

 {Body}

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

Creating a Parent Class

Creating a Person class with Display methods.

A Python program to demonstrate inheritance

class Person(object):

 # Constructor

 def __init__(self, name, id):

 self.name = name

 self.id = id

 # To check if this person is an employee

 def Display(self):

 print(self.name, self.id)

Driver code

emp = Person("Satyam", 102) # An Object of Person

emp.Display()

Output:
Satyam 102

Creating a Child Class

Here Emp is another class which is going to inherit the properties of

the Person class(base class).

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

class Emp(Person):

 def Print(self):

 print("Emp class called")

 Emp_details = Emp("Mayank", 103)

 # calling parent class function

Emp_details.Display()

 # Calling child class function

Emp_details.Print()

Output:
Mayank 103

Emp class called

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

Example of Inheritance in Python

 #A Python program to demonstrate inheritance

 #Base or Super class. Note object in bracket.

 #(Generally, object is made ancestor of all classes)

 #In Python 3.x "class Person" is

 #equivalent to "class Person(object)"

class Person(object):

 # Constructor

 def __init__(self, name):

 self.name = name

 # To get name

 def getName(self):

 return self.name

 # To check if this person is an employee

 def isEmployee(self):

 return False

 # Inherited or Subclass (Note Person in bracket)

class Employee(Person):

 # Here we return true

 def isEmployee(self):

 return True

 # Driver code

emp = Person("Geek1") # An Object of Person

print(emp.getName(), emp.isEmployee())

 emp = Employee("Geek2") # An Object of Employee

print(emp.getName(), emp.isEmployee())

Output :

Geek1 False

Geek2 True

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

What is object class?

In Python (from version 3. x), the object is the root of all classes.

Subclassing (Calling constructor of parent class)

A child class needs to identify which class is its parent class. This can be

done by mentioning the parent class name in the definition of the child

class.

Eg: class subclass_name (superclass_name):

Python code to demonstrate how parent constructors

are called.

parent class

class Person(object):

 # __init__ is known as the constructor

 def __init__(self, name, idnumber):

 self.name = name

 self.idnumber = idnumber

 def display(self):

 print(self.name)

 print(self.idnumber)

child class

class Employee(Person):

 def __init__(self, name, idnumber, salary, post):

https://www.geeksforgeeks.org/python-programming-language/

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

 self.salary = salary

 self.post = post

 # invoking the __init__ of the parent class

 Person.__init__(self, name, idnumber)

creation of an object variable or an instance

a = Employee('Rahul', 886012, 200000, "Intern")

calling a function of the class Person using its instance

a.display()

Output:

Rahul

886012

‘a’ is the instance created for the class Person. It invokes the __init__() of

the referred class. You can see ‘object’ written in the declaration of the

class Person. In Python, every class inherits from a built-in basic class

called ‘object’. The constructor i.e. the ‘__init__’ function of a class is

invoked when we create an object variable or an instance of the class.

The variables defined within __init__() are called the instance variables or

objects. Hence, ‘name’ and ‘idnumber’ are the objects of the class Person.

Similarly, ‘salary’ and ‘post’ are the objects of the class Employee. Since

the class Employee inherits from class Person, ‘name’ and ‘idnumber’ are

also the objects of class Employee.

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

Python program to demonstrate error if we forget to invoke __init__() of

the parent

If you forget to invoke the __init__() of the parent class then its instance

variables would not be available to the child class.

The following code produces an error for the same reason.

class A:

 def __init__(self, n='Rahul'):

 self.name = n

class B(A):

 def __init__(self, roll):

 self.roll = roll

object = B(23)

print(object.name)

Output :

Traceback (most recent call last):

 File "/home/de4570cca20263ac2c4149f435dba22c.py",

line 12, in

 print (object.name)

AttributeError: 'B' object has no attribute 'name'

