
Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022 -2023

 جامعة الانبار

 كلية علوم الحاسوب وتكنولوجيا المعلومات

 قسم أنظمة شبكات الحاسوب

 OOPكيانية برمجة

 ثانيةالمرحلة ال

 الأول والثاني الفصل الدراسي

 مدرس المادة

 م.د. سميه عبدالله حمد

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

Types Of Inheritance

In Python, based upon the number of child and parent classes involved,

there are five types of inheritance. The type of inheritance are listed below:

1. Single inheritance

2. Multiple Inheritance

3. Multilevel inheritance

4. Hierarchical Inheritance

5. Hybrid Inheritance

Single Inheritance

In single inheritance, a child class inherits from a single-parent class. Here

is one child class and one parent class.

Python Single Inheritance

Example

Let’s create one parent class called Vehicle and one child class

called Car to implement single inheritance.

Base class

class Vehicle:

 def Vehicle_info(self):

 print('Inside Vehicle class')

Child class

class Car(Vehicle):

 def car_info(self):

 print('Inside Car class')

Create object of Car

car = Car()

access Vehicle's info using car object

car.Vehicle_info()

car.car_info()

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

Output

Inside Vehicle class

Inside Car class

Multiple Inheritance

In multiple inheritance, one child class can inherit from multiple parent

classes. So here is one child class and multiple parent classes.

Python Multiple Inheritance

Example

Parent class 1

class Person:

 def person_info(self, name, age):

 print('Inside Person class')

 print('Name:', name, 'Age:', age)

Parent class 2

class Company:

 def company_info(self, company_name, location):

 print('Inside Company class')

 print('Name:', company_name, 'location:', location)

Child class

class Employee(Person, Company):

 def Employee_info(self, salary, skill):

 print('Inside Employee class')

 print('Salary:', salary, 'Skill:', skill)

Create object of Employee

emp = Employee()

access data

emp.person_info('Jessa', 28)

emp.company_info('Google', 'Atlanta')

emp.Employee_info(12000, 'Machine Learning')

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

Output

Inside Person class

Name: Jessa Age: 28

Inside Company class

Name: Google location: Atlanta

Inside Employee class

Salary: 12000 Skill: Machine Learning

In the above example, we created two parent

classes Person and Company respectively. Then we create one child

called Employee which inherit from Person and Company classes.

Multilevel inheritance

In multilevel inheritance, a class inherits from a child class or derived class.

Suppose three classes A, B, C. A is the superclass, B is the child class of

A, C is the child class of B. In other words, we can say a chain of

classes is called multilevel inheritance.

Python Multilevel Inheritance

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

Example

Base class

class Vehicle:

 def Vehicle_info(self):

 print('Inside Vehicle class')

Child class

class Car(Vehicle):

 def car_info(self):

 print('Inside Car class')

Child class

class SportsCar(Car):

 def sports_car_info(self):

 print('Inside SportsCar class')

Create object of SportsCar

s_car = SportsCar()

access Vehicle's and Car info using SportsCar object

s_car.Vehicle_info()

s_car.car_info()

s_car.sports_car_info()

Output

Inside Vehicle class

Inside Car class

Inside SportsCar class

In the above example, we can see there are three classes

named Vehicle, Car, SportsCar. Vehicle is the superclass, Car is a child of

Vehicle, SportsCar is a child of Car. So we can see the chaining of classes.

Hierarchical Inheritance

In Hierarchical inheritance, more than one child class is derived from a

single parent class. In other words, we can say one parent class and multiple

child classes.

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

Python hierarchical inheritance

Example

Let’s create ‘Vehicle’ as a parent class and two child class ‘Car’ and

‘Truck’ as a child class.

class Vehicle:

 def info(self):

 print("This is Vehicle")

class Car(Vehicle):

 def car_info(self, name):

 print("Car name is:", name)

class Truck(Vehicle):

 def truck_info(self, name):

 print("Truck name is:", name)

obj1 = Car()

obj1.info()

obj1.car_info('BMW')

obj2 = Truck()

obj2.info()

obj2.truck_info('Ford')

Output
This is Vehicle

Car name is: BMW

This is Vehicle

Truck name is: Ford

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

Hybrid Inheritance

When inheritance is consists of multiple types or a combination of different

inheritance is called hybrid inheritance.

Python hybrid inheritance

Example

class Vehicle:

 def vehicle_info(self):

 print("Inside Vehicle class")

class Car(Vehicle):

 def car_info(self):

 print("Inside Car class")

class Truck(Vehicle):

 def truck_info(self):

 print("Inside Truck class")

Sports Car can inherits properties of Vehicle and Car

class SportsCar(Car, Vehicle):

 def sports_car_info(self):

 print("Inside SportsCar class")

create object

s_car = SportsCar()

s_car.vehicle_info()

s_car.car_info()

s_car.sports_car_info()

Output:

Inside Vehicle class

Inside Car class

Inside SportsCar class

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

Note: In the above example, hierarchical and multiple inheritance exists.

Here we created, parent class Vehicle and two child classes

named Car and Truck this is hierarchical inheritance.

Another is SportsCar inherit from two parent classes

named Car and Vehicle. This is multiple inheritance.

Python super() function

When a class inherits all properties and behavior from the parent class is

called inheritance. In such a case, the inherited class is a subclass and the

latter class is the parent class.

In child class, we can refer to parent class by using the super() function.

The super function returns a temporary object of the parent class that

allows us to call a parent class method inside a child class method.

Benefits of using the super() function.

1. We are not required to remember or specify the parent class name to

access its methods.

2. We can use the super() function in both single and multiple

inheritances.

3. The super() function support code reusability as there is no need to

write the entire function

Example

class Company:

 def company_name(self):

 return 'Google'

class Employee(Company):

 def info(self):

 # Calling the superclass method using super()function

 c_name = super().company_name()

 print("Jessa works at", c_name)

Creating object of child class

emp = Employee()

emp.info()

Output:

Jessa works at Google

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

In the above example, we create a parent class Company and child

class Employee. In Employee class, we call the parent class method by

using a super() function.

issubclass()

In Python, we can verify whether a particular class is a subclass of another

class. For this purpose, we can use Python built-in function issubclass().

This function returns True if the given class is the subclass of the specified

class. Otherwise, it returns False.

Syntax

issubclass(class, classinfo)

Where,

 class: class to be checked.

 classinfo: a class, type, or a tuple of classes or data types.

Example

class Company:

 def fun1(self):

 print("Inside parent class")

class Employee(Company):

 def fun2(self):

 print("Inside child class.")

class Player:

 def fun3(self):

 print("Inside Player class.")

Result True

print(issubclass(Employee, Company))

Result False

print(issubclass(Employee, list))

Result False

print(issubclass(Player, Company))

Result True

print(issubclass(Employee, (list, Company)))

Result True

print(issubclass(Company, (list, Company)))

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

Method Overriding

In inheritance, all members available in the parent class are by default

available in the child class. If the child class does not satisfy with parent

class implementation, then the child class is allowed to redefine that

method by extending additional functions in the child class. This concept

is called method overriding.

When a child class method has the same name, same parameters, and same

return type as a method in its superclass, then the method in the child is

said to override the method in the parent class.

Python method overriding

Example

class Vehicle:

 def max_speed(self):

 print("max speed is 100 Km/Hour")

class Car(Vehicle):

 # overridden the implementation of Vehicle class

 def max_speed(self):

 print("max speed is 200 Km/Hour")

Creating object of Car class

car = Car()

car.max_speed()

Output:

max speed is 200 Km/Hour

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

In the above example, we create two classes named Vehicle (Parent class)

and Car (Child class). The class Car extends from the class Vehicle so, all

properties of the parent class are available in the child class. In addition to

that, the child class redefined the method max_speed().

Method Resolution Order in Python

In Python, Method Resolution Order(MRO) is the order by which Python

looks for a method or attribute. First, the method or attribute is searched

within a class, and then it follows the order we specified while inheriting.

This order is also called the Linearization of a class, and a set of rules is

called MRO (Method Resolution Order). The MRO plays an essential

role in multiple inheritances as a single method may found in multiple

parent classes.

In multiple inheritance, the following search order is followed.

1. First, it searches in the current parent class if not available, then

searches in the parents class specified while inheriting (that is left to

right.)

2. We can get the MRO of a class. For this purpose, we can use either

the mro attribute or the mro() method.

Example

class A:

 def process(self):

 print(" In class A")

class B(A):

 def process(self):

 print(" In class B")

class C(B, A):

 def process(self):

 print(" In class C")

Creating object of C class

C1 = C()

C1.process()

print(C.mro())

In class C

[<class '__main__.C'>, <class '__main__.B'>, <class

'__main__.A'>, <class 'object'>]

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

In the above example, we create three classes named A, B and C.

Class B is inherited from A, class C inherits from B and A. When we

create an object of the C class and calling the process() method, Python

looks for the process() method in the current class in the C class itself.

Then search for parent classes, namely B and A, because C class inherit

from B and A. that is, C(B, A) and always search in left to right manner.

