
Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022 -2023

 جامعة الانبار

 كلية علوم الحاسوب وتكنولوجيا المعلومات

 قسم أنظمة شبكات الحاسوب

 OOPكيانية برمجة

 ثانيةالمرحلة ال

 الأول والثاني الفصل الدراسي

 مدرس المادة

 م.د. سميه عبدالله حمد

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

Private Variables and Methods

Private Variables

When instance variables of the parent class don’t need to be inherited by the

child class, they can be made unavailable to the child class by adding double

underscores (__) before the variable name. This appends _classname before

the variable name. So, when we try to access it like other instance variables of

the class it gives an “Attribute error”.

class ProgramLanguage:

 def __init__(self, name):

 self.name = name

 self.__private = 'Private variable'

class Python(ProgramLanguage):

 pass

y = Python("Python")

print(y.name)

print(y.__private)

The error would be:

AttributeError: 'Python' object has no attribute '__private'

__private in parent class ProgramLanguage is

now _ProgramLanguage__private and can’t be accessed using .__private.

Same is true for class methods.

Note: Employing a double underscore prefix only makes the method or

variable inaccessible using the originally declared name. These can still be

accessed, like y._ProgramLanguage__private in the above example. The use

of this syntax is an indication of how the variable or method should be treated.

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

Private Methods in Python

In Python, you can define a private method by prefixing the method name with

a single underscore. Differently from other programming languages making a

method private in Python doesn’t prevent you from accessing it from outside

your class. It’s simply a convention to tell other developers that the method is

for “internal use only” for your class.

A private method is a method that should only be called inside the Python class

where it is defined. To indicate a Python private method prefix its name with

a single underscore.

Let’s see how you can define a private method in Python and how it differs

from a public method.

class Person:

 def __init__(self, name):

 self.name = name

 def run(self):

 print("{} is running".format(self.name))

jack = Person("Jack")

jack.run()

When we create an instance and execute the run() method we get back the

expected message:

Output:

Jack is running

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

Now let’s say we want to add a warmup() method that the run method calls

internally. At the same time, the warmup() method shouldn’t be callable

outside of the class.

In theory, we can achieve this by adding one underscore before the name of

the method:

def run(self):

 self._warmup()

 print("{} is running".format(self.name))

def _warmup(self):

 print("{} is warming up".format(self.name))

As you can see we have defined the _warmup() method and then we call the

private method inside the run() method.

Nothing changes in the way you call run() on the instance we have created

before:

jack = Person("Jack")

jack.run()

Output:

Jack is warming up

Jack is running

Now, let’s see what happens if we try to call the _warmup() method directly

on the Person instance.

jack._warmup()

Output:

Jack is warming up

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

Using a single underscore to indicate the name of a Python private method in

a class is just a naming convention between developers and it’s not enforced

by the Python interpreter.

A private method defined in a Python class should not be called on an instance

of that class. It should only be called inside the class itself.

In Python, it’s also possible to prefix the name of a method with a double

underscore instead of a single underscore.

Update the method _warmup() from the previous example and add another

underscore at the beginning of the method name: __warmup().

def run(self):

 self.__warmup()

 print("{} is running".format(self.name))

def __warmup(self):

 print("{} is warming up".format(self.name))

The run() method behaves in the same way when called on the

instance:

jack = Person("Jack")

jack.run()

Output:

Jack is warming up

Jack is running

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

And what happens if we call the method __warmup() on the Person instance?

jack.__warmup()

Output:

Traceback (most recent call last):

 File "private.py", line 45, in <module>

 jack.__warmup()

AttributeError: 'Person' object has no attribute '__warmup'

The Python interpreter throws an exception and tells us that this Person object

has no attribute __warmup.

This error message could be misleading considering that this method is present

in the class but the Python interpreter is “hiding” it by using something

called name mangling.

The purpose of name mangling is to avoid collisions with method names when

inheriting a class.

we have seen what happens when you prefix method names with two

underscores. But, is the Python interpreter hiding these methods completely?

To answer this question we will use the dir() function to see attributes and

methods available in our Person instance.

print(dir(jack))

Output:

['_Person__warmup', '__class__', '__delattr__', '__dict__',

'__dir__', '__doc__', '__eq__', '__format__', '__ge__',

'__getattribute__', '__gt__', '__hash__', '__init__',

'__init_subclass__', '__le__', '__lt__', '__module__', '__ne__',

'__new__', '__reduce__', '__reduce_ex__', '__repr__',

'__setattr__', '__sizeof__', '__str__', '__subclasshook__',

'__weakref__', 'name', 'run']

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

Interestingly, we don’t see __warmup in the list of available methods but we

see _Person__warmup.

Let’s try to call it on the instance:

jack = Person("Jack")

jack._Person__warmup()

Output:

Jack is warming up

So it looks like our name mangled method is not completely hidden

considering that we can access it by adding an underscore and the class name

before the method name.

_{class-name}__{name-mangled-method}

In Python, you can access a method whose name starts with double

underscores (and doesn’t end with underscores) from an instance of a class.

You can do that by adding an underscore and the name of the class before the

name of the method. This is called name mangling.

Name Mangling and Inheritance in Python

Define a class called Runner that inherits the base class Person.

class Runner(Person):

 def __init__(self, name, fitness_level):

 super().__init__(name)

 self.fitness_level = fitness_level

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

Then execute the public method run() of the parent class on a Runner instance.

kate = Runner("Kate", "high")

kate.run()

Output:

Kate is warming up

Kate is running

The child class has inherited the public method run(). And what happens if we

try to call the name mangled method?

kate.__warmup()

Output:

Traceback (most recent call last):

 File "private.py", line 19, in <module>

 kate.__warmup()

AttributeError: 'Runner' object has no attribute '__warmup'

We get the expected error due to name mangling. Notice that we can still call

it by using the name of the parent class as we have seen in the previous section:

kate._Person__warmup()

Output:

Kate is warming up

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

Below you can see the output of the dir() function for the child class.

['_Person__warmup', '__class__', '__delattr__', '__dict__',

'__dir__', '__doc__', '__eq__', '__format__', '__ge__',

'__getattribute__', '__gt__', '__hash__', '__init__',

'__init_subclass__', '__le__', '__lt__', '__module__', '__ne__',

'__new__', '__reduce__', '__reduce_ex__', '__repr__',

'__setattr__', '__sizeof__', '__str__', '__subclasshook__',

'__weakref__', 'fitness_level', 'name', 'run']

Defining a Name Mangled Method in a Child Class

What happens if we define the same name mangled method in our child class?

Override the public method run() and the “hidden” method __warmup() in the

Runner class.

class Runner(Person):

 def __init__(self, name, fitness_level):

 super().__init__(name)

 self.fitness_level = fitness_level

 def run(self):

 self.__warmup()

 print("{} has started a race".format(self.name))

 def __warmup(self):

 print("{} is warming up before a race".format (self.name))

kate = Runner("Kate", "high")

kate.run()

Output:
Kate is warming up before a race

Kate has started a race

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

So, both methods in the child class are executed.

One thing I’m curious about it’s how the Python interpreter represents the new

name mangled method in the child object considering that for the parent object

it was using an underscore followed by the class name.

print(dir(kate))

Output:

 ['_Person__warmup', '_Runner__warmup', '__class__',

'__delattr__', '__dict__', '__dir__', '__doc__', '__eq__',

'__format__', '__ge__', '__getattribute__', '__gt__', '__hash__',

'__init__', '__init_subclass__', '__le__', '__lt__', '__module__',

'__ne__', '__new__', '__reduce__', '__reduce_ex__', '__repr__',

'__setattr__', '__sizeof__', '__str__', '__subclasshook__',

'__weakref__', 'fitness_level', 'name', 'run']

You can see that the child object has now two mangled methods:

 _Person_warmup

 _Runner__warmup

This shows how name mangling prevents collisions with method names when

you inherit a class.

class Person:

 def __init__(self, name):

 self.name = name

 def run(self):

 self.__warmup()

 print("{} is running".format(self.name))

 def __warmup(self):

 print("{} is warming up".format(self.name))

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

class Runner(Person):

 def __init__(self, name, fitness_level):

 super().__init__(name)

 self.fitness_level = fitness_level

 def run(self):

 self.__warmup()

 print("{} has started a race".format(self.name))

 def __warmup(self):

 print("{} is warming up before a race".format (self.name))

kate = Runner("Kate", "high")

kate.run()

Output:

Kate is warming up before a race

Kate has started a race

