
Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022 -2023

 جامعة الانبار

 كلية علوم الحاسوب وتكنولوجيا المعلومات

 قسم أنظمة شبكات الحاسوب

 OOPكيانية برمجة

 ثانيةالمرحلة ال

 الأول والثاني الفصل الدراسي

 مدرس المادة

 م.د. سميه عبدالله حمد

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

Operator Overloading in Python

Operator Overloading means giving extended meaning beyond their

predefined operational meaning. For example operator + is used to add two

integers as well as join two strings and merge two lists. It is achievable

because ‘+’ operator is overloaded by int class and str class. You might

have noticed that the same built-in operator or function shows different

behavior for objects of different classes, this is called Operator

Overloading.

Example

Python program to show use of

+ operator for different purposes.

print(1 + 2)

concatenate two strings

print("Geeks"+"For")

Product two numbers

print(3 * 4)

Repeat the String

print("Geeks"*4)

Output
3

GeeksFor

12

GeeksGeeksGeeksGeeks

How to overload the operators in Python?

Consider that we have two objects which are a physical representation of a

class (user-defined data type) and we have to add two objects with binary

‘+’ operator it throws an error, because compiler don’t know how to add

two objects. So we define a method for an operator and that process is

called operator overloading. We can overload all existing operators but we

can’t create a new operator. To perform operator overloading, Python

provides some special function or magic function that is automatically

invoked when it is associated with that particular operator. For example,

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

when we use + operator, the magic method __add__ is automatically

invoked in which the operation for + operator is defined.

Overloading binary + operator in Python:

When we use an operator on user-defined data types then automatically a

special function or magic function associated with that operator is invoked.

Changing the behavior of operator is as simple as changing the behavior of

a method or function. You define methods in your class and operators work

according to that behavior defined in methods. When we use + operator,

the magic method __add__ is automatically invoked in which the operation

for + operator is defined. Thereby changing this magic method’s code, we

can give extra meaning to the + operator.

How Does the Operator Overloading Actually work?

Whenever you change the behavior of the existing operator through

operator overloading, you have to redefine the special function that is

invoked automatically when the operator is used with the objects.

For Example:

Python Program illustrate how

to overload an binary + operator

And how it actually works

 class A:

 def __init__(self, a):

 self.a = a

 # adding two objects

 def __add__(self, o):

 return self.a + o.a

ob1 = A(1)

ob2 = A(2)

ob3 = A("Geeks")

ob4 = A("For")

print(ob1 + ob2)

print(ob3 + ob4)

Actual working when Binary Operator is used.

print(A.__add__(ob1 , ob2))

print(A.__add__(ob3,ob4))

#And can also be Understand as :

print(ob1.__add__(ob2))

print(ob3.__add__(ob4))

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

Output
3

GeeksFor

3

GeeksFor

3

GeeksFor

Here, We defined the special function “__add__()” and when the

objects ob1 and ob2 are coded as “ob1 + ob2“, the special function is

automatically called as ob1.__add__(ob2) which simply means that ob1

calls the __add__() function with ob2 as an Argument and It actually

means A .__add__(ob1, ob2). Hence, when the Binary operator is

overloaded, the object before the operator calls the respective function with

object after operator as parameter.

Python Program to perform addition

of two complex numbers using binary

+ operator overloading.

class complex:

 def __init__(self, a, b):

 self.a = a

 self.b = b

 # adding two objects

 def __add__(self, other):

 return self.a + other.a, self.b + other.b

Ob1 = complex(1, 2)

Ob2 = complex(2, 3)

Ob3 = Ob1 + Ob2

print(Ob3)

Output

(3, 5)

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

Overloading comparison operators in Python :

Python program to overload

a comparison operators

 class A:

 def __init__(self, a):

 self.a = a

 def __gt__(self, other):

 if(self.a>other.a):

 return True

 else:

 return False

ob1 = A(2)

ob2 = A(3)

if(ob1>ob2):

 print("ob1 is greater than ob2")

else:

 print("ob2 is greater than ob1")

Output:
ob2 is greater than ob1

Overloading equality and less than operators:

Python program to overload equality

and less than operators

 class A:

 def __init__(self, a):

 self.a = a

 def __lt__(self, other):

 if(self.a<other.a):

 return "ob1 is lessthan ob2"

 else:

 return "ob2 is less than ob1"

 def __eq__(self, other):

 if(self.a == other.a):

 return "Both are equal"

 else:

 return "Not equal"

ob1 = A(2)

ob2 = A(3)

print(ob1 < ob2)

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

ob3 = A(4)

ob4 = A(4)

print(ob1 == ob2)

Output:
ob1 is lessthan ob2

Not equal

Python magic methods or special functions for operator overloading

Binary Operators:

Operator Magic Method

+ __add__(self, other)

– __sub__(self, other)

* __mul__(self, other)

/ __truediv__(self, other)

// __floordiv__(self, other)

% __mod__(self, other)

** __pow__(self, other)

>> __rshift__(self, other)

<< __lshift__(self, other)

& __and__(self, other)

| __or__(self, other)

^ __xor__(self, other)

https://www.geeksforgeeks.org/basic-operators-python/

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

Comparison Operators:

Operator Magic Method

< __lt__(self, other)

> __gt__(self, other)

<= __le__(self, other)

>= __ge__(self, other)

== __eq__(self, other)

!= __ne__(self, other)

Assignment Operators:

Operator Magic Method

-= __isub__(self, other)

+= __iadd__(self, other)

*= __imul__(self, other)

/= __idiv__(self, other)

//= __ifloordiv__(self, other)

%= __imod__(self, other)

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

**= __ipow__(self, other)

>>= __irshift__(self, other)

<<= __ilshift__(self, other)

&= __iand__(self, other)

|= __ior__(self, other)

^= __ixor__(self, other)

Unary Operators:

Operator Magic Method

– __neg__(self)

+ __pos__(self)

~ __invert__(self)

Note: It is not possible to change the number of operands of an operator.

For example: If we can not overload a unary operator as a binary operator.

The following code will throw a syntax error.

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

Python program which attempts to

overload ~ operator as binary operator

class A:

 def __init__(self, a):

 self.a = a

 # Overloading ~ operator, but with two operands

 def __invert__(self):

 return "This is the ~ operator, overloaded as binary operator."

ob1 = A(2)

print(~ob1)

Output

This is the ~ operator, overloaded as binary operator.

operator overloading on Boolean values:

In Python, you can overload the Boolean operators and, or, and not by

defining the __and__, __or__, and __not__ special methods in your class.

Here’s an example of how to overload the and operator for a custom class:

class MyClass:

 def __init__(self, value):

 self.value = value

 def __and__(self, other):

 return MyClass(self.value and other.value)

a = MyClass(True)

b = MyClass(False)

c = a & b # c.value is False

Explanation:

In this example, we define a MyClass that has a single attribute value,

which is a boolean. We then overload the & operator by defining the

__and__ method to perform a logical and operation on the value attribute

of two MyClass instances.

Object Oriented Programming (OOP)

Dr. Sumaya Abdulla Hamad 2022-2023

When we call a & b, the __and__ method is called with a as the first

argument and b as the second argument. The method returns a new instance

of MyClass with a value attribute that is the logical and of a.value and

b.value.

Note that Python also provides built-in boolean operators that can be used

with any object. For example, you can use the bool() function to convert

any object to a boolean value, and the all() and any() functions to perform

logical and and or operations on a sequence of boolean values. Overloading

the boolean operators in a custom class can be useful to provide a more

natural syntax and semantics for your class.

Advantages:

Overloading boolean operators in a custom class can provide several

advantages, including:

1. Improved readability: By overloading boolean operators, you can

provide a more natural syntax and semantics for your class that

makes it easier to read and understand.

2. Consistency with built-in types: Overloading boolean operators can

make your class behave more like built-in types in Python, which

can make it easier to use and integrate with other code.

3. Operator overloading: Overloading boolean operators is an example

of operator overloading in Python, which can make your code more

concise and expressive by allowing you to use familiar operators to

perform custom operations on your objects.

4. Custom behavior: Overloading boolean operators can allow you to

define custom behavior for your class that is not available in built-

in types or other classes.

5. Enhanced functionality: By overloading boolean operators, you can

add new functionality to your class that was not available before,

such as the ability to perform logical and or or operations on

instances of your class.

Overall, overloading boolean operators in a custom class can make your

code more readable, consistent, concise, expressive, and functional.

However, it’s important to use operator overloading judiciously and only

when it makes sense for the semantics of your class.

