

 جامعة ألأنبار

كلية علوم الحاسوب وتكنولوجيا

 المعلومات

 قسم أنظمة شبكات الحاسوب

1

LECTURE 1 OS OPERATION AND FUNCTIONS

 Dual-Mode and Multimode Operation

• In order to ensure the proper execution of the operating system, we must be

able to distinguish between the execution of operating-system code and user

defined code.

• There are two separate modes of operation: user mode and kernel mode

(also called supervisor mode, system mode, or privileged mode).

• A bit, called the mode bit, is added to the hardware of the computer to

indicate the current mode: kernel (0) or user (1). With the mode bit, we can

distinguish between a task that is executed on behalf of the operating system

and one that is executed on behalf of the user.

• At system boot time, the hardware starts in kernel mode.

• The operating system is then loaded and starts user applications in user

mode.

• Whenever a trap or interrupt occurs, the hardware switches from user mode

to kernel mode (that is, changes the state of the mode bit to 0).

• Thus, whenever the operating system gains control of the computer, it is in

kernel mode.

• The dual mode of operation provides us with the means for protecting

the operating system from errant user.

• We accomplish this protection by designating some of the machine

instructions that may cause harm as privileged instructions.

• The hardware allows privileged instructions to be executed only in kernel

mode.

• If an attempt is made to execute a privileged instruction in user mode, the

hardware does not execute the instruction but rather treats it as illegal and

traps it to the operating system.

• Examples of a privileged instructions include I/O control, timer

management, and interrupt management.

• The concept of modes can be extended beyond two modes.

2

LECTURE 1 OS OPERATION AND FUNCTIONS

• CPUs that support Virtualization frequently have a separate mode to indicate

when the virtual machine manager (VMM)—and the virtualization

management software—is in control of the system.

• In this mode, the VMM has more privileges than user processes but fewer

than the kernel. It needs that level of privilege so it can create and manage

virtual machines, changing the CPU state to do so.

 The life cycle of instruction execution

• Initial control resides in the operating system, where instructions are

executed in kernel mode.

• When control is given to a user application, the mode is set to user mode.

• Eventually, control is switched back to the operating system via an interrupt,

a trap, or a system call.

 (System calls provide the means for a user program to ask the operating

system to perform tasks reserved for the operating system on the user program’s

behalf).

• When a system call is executed, it is typically treated by the hardware as a

software interrupt. Control passes through the interrupt vector to a service

routine in the operating system, and the mode bit is set to kernel mode.

• The system-call service routine is a part of the operating system.

• The kernel examines the interrupting instruction to determine what system

call has occurred; a parameter indicates what type of service the user

program is requesting. Additional information needed for the request may be

passed in registers, on the stack, or in memory.

• The kernel verifies that the parameters are correct and legal, executes the

request, and returns control to the instruction following the system call.

3

LECTURE 1 OS OPERATION AND FUNCTIONS

Timer

• We must ensure that the operating system maintains control over the CPU.

• We cannot allow a user program to get stuck in an infinite loop or to fail to

call system services and never return control to the operating system.

• To accomplish this goal, we can use a timer.

• A timer can be set to interrupt the computer after a specified period.

OS Functions Overview

Process Management

• A program is a inactive entity, like the contents of a file stored on disk,

whereas a process is an active entity.

• A process needs certain resources—including CPU time, memory, files, and

I/O devices—to accomplish its task. These resources are either given to the

process when it is created or allocated to it while it is running.

4

LECTURE 1 OS OPERATION AND FUNCTIONS

• For example, consider a process whose function is to display the status of a

file on the screen of a terminal.

• The process will be given the name of the file as an input and will execute

the appropriate instructions and system calls to obtain and display the

desired information on the terminal.

• When the process terminates, the operating system will reclaim any reusable

resources.

• A process is the unit of work in a system.

• A system consists of a collection of processes, some of which are operating-

system processes the rest of which are user processes.

• All these processes can potentially execute concurrently—by multiplexing

on a single CPU, for example.

• The operating system is responsible for the following activities in

connection with process management:

1. Scheduling processes and threads on the CPUs

2. Creating and deleting both user and system processes

3. Suspending and resuming processes

4. Providing mechanisms for process synchronization

5. Providing mechanisms for process communication

Memory Management

• The operating system is responsible for the following activities in

connection with memory management:

1. Keeping track of which parts of memory are currently being used and who is

using them

2. Deciding which processes (or parts of processes) and data to move into and

out of memory

3. Allocating and deallocating memory space as needed

Storage Management

5

LECTURE 1 OS OPERATION AND FUNCTIONS

• To make the computer system convenient for users, the operating system

provides a uniform, logical view of information storage.

• The operating system abstracts from the physical properties of its storage

devices to define a logical storage unit, the file.

• The operating system maps files onto physical media and accesses these files

via the storage devices.

File-System Management

 The operating system is responsible for the following activities in

connection with file management:

1. Creating and deleting files

2. Creating and deleting directories to organize files

3. Supporting primitives for manipulating files and directories

4. Mapping files onto secondary storage

5. Backing up files on stable (nonvolatile) storage media

Mass-Storage Management

 The operating system is responsible for the following activities in

connection with disk management:

1. Free-space management

2. Storage allocation

3. Disk scheduling

I/O Systems

 The OS I/O subsystem consists of several components:

1. A memory-management component that includes buffering, caching, and

spooling

2. A general device-driver interface

3. Drivers for specific hardware devices

Protection and Security

6

LECTURE 1 OS OPERATION AND FUNCTIONS

 If a computer system has multiple users and allows the parallel execution of

multiple processes, then access to data must be regulated (controlled).

 For that purpose, mechanisms ensure that files, memory segments, CPU, and

other resources can be operated on by only those processes that have gained

proper authorization from the operating system.

 For example, memory-addressing hardware ensures that a process can

execute only within its own address space. The timer ensures that no process

can gain control of the CPU without eventually relinquishing control.

Device-control registers are not accessible to users, so the integrity of the

various peripheral devices is protected.

 Protection is any mechanism for controlling the access of processes or users

to the resources.

 A protection-oriented system provides a means to distinguish between

authorized and unauthorized usage.

 Security is used to defend a system from external and internal attacks.

 Such attacks spread across a huge range and include viruses and worms,

denial-of service attacks.

