

 جامعة ألأنبار

كلية علوم الحاسوب وتكنولوجيا

 المعلومات

 قسم أنظمة شبكات الحاسوب

1

LECTURE 3 OPERATING SYSTEM STRUCTURES

Overview

We can view an operating system from several points:

1. One view focuses on the services that the system provides;

2. on the interface that it makes available to users and programmers;

3. a third, on its components and their interconnections.

Operating System Services

• An operating system provides an environment for the execution of programs.

It provides certain services to programs and to the users of those programs.

• One set of operating system services provides functions that are helpful

to the user:

– User interface. Almost all operating systems have a user interface

(UI). This interface can take several forms:

– Command-Line Interface (CLI), which uses text commands and a

method for entering them.

– Batch interface, in which commands are entered into files, and those

files are executed.

2

LECTURE 3 OPERATING SYSTEM STRUCTURES

– Most commonly, a Graphical User Interface (GUI). Here, the

interface is a window system with a pointing device to direct I/O,

choose from menus, and make selections and a keyboard to enter text.

-Program execution. The system must be able to load a program into memory

and to run that program. The program must be able to end its execution, either

normally or abnormally (indicating error).

– I/O operations. A running program may require I/O, which may

involve a file or an I/O device. For efficiency and protection, users

usually cannot control I/O devices directly. Therefore, the operating

system must provide a means to do I/O.

– File-system manipulation. programs need to read and write files and

directories. They also need to create and delete them by name, search

for a given file, and list file information.

– Communications. There are many conditions in which one process

needs to exchange information with another process. Such

communication may occur between processes that are executing on

the same computer or between processes that are executing on

different computer systems tied together by a computer network.

– Communications may be implemented via shared memory, in which

two or more processes read and write to a shared section of memory,

or message passing, in which packets of information in predefined

formats are moved between processes by the operating system.

– Error detection. The operating system needs to be detecting and

correcting errors constantly. Errors may occur in the CPU and

memory, in I/O devices, on disk, a connection failure on a network, or

lack of paper in the printer, and in the user program. For each type of

error, the operating system should take the appropriate action to

ensure correct and consistent computing. Sometimes, it has no choice

but to halt the system. At other times, it might terminate an error-

causing process or return an error code to a process for the process to

detect and possibly correct.

- Another set of operating system functions exists not for helping the user but

rather for ensuring the efficient operation of the system itself. Systems with

3

LECTURE 3 OPERATING SYSTEM STRUCTURES

multiple users can gain efficiency by sharing the computer resources among the

users.

1. Resource allocation. [CPU cycles, main memory, and file storage,

I/O devices, printers, USB storage drives, and other peripheral

devices]

2. Accounting. keep track of which users use how much and what kind

of computer resources.

3. Protection and security.

System Calls

 System calls provide an interface to the services made available by an

operating system. See next fig.

• As you can see, even simple programs may make heavy use of the operating

system. Frequently, systems execute thousands of system calls per second.

• Typically, application developers design programs according to an

application programming interface (API). The API specifies a set of

functions that are available to an application programmer, including the

parameters that are passed to each function and the return values the

programmer can expect.

• A programmer accesses an API via a library of code provided by the

operating system.

Example

4

LECTURE 3 OPERATING SYSTEM STRUCTURES

• Behind the scenes, the functions that make up an API typically invoke the

actual system calls on behalf of the application programmer. For example,

the Windows function CreateProcess() actually invokes the

NTCreateProcess() system call in the Windows kernel.

• Why would an application programmer prefer programming according to an

API rather than invoking actual system calls?

• There are several reasons for doing so:

• Program portability, an application programmer designing a program using

an API can expect her program to compile and run on any system that

supports the same API.

• Furthermore, actual system calls can often be more detailed and difficult to

work with than the API available to an application programmer.

• For most programming languages, the run-time support system (a set of

functions built into libraries included with a compiler) provides a system

call interface that serves as the link to system calls made available by the

operating system. The system-call interface intercepts function calls in the

API and invokes the necessary system calls within the operating system.

5

LECTURE 3 OPERATING SYSTEM STRUCTURES

• Typically, a number is associated with each system call, and the system-call

interface maintains a table indexed according to these numbers. The system

call interface then invokes the intended system call in the operating-system

kernel and returns the status of the system call and any return values.

• Thus, most of the details of the operating-system interface are hidden from

the programmer by the API and are managed by the run-time support library.

The relationship between an API, the system-call interface, and the

operating system is shown in Figure 2.6,

Types of System Calls

• System calls can be grouped roughly into six major categories:

• Process control.

• File manipulation.

• Device manipulation.

6

LECTURE 3 OPERATING SYSTEM STRUCTURES

• Information maintenance.

• Communications.

• Protection.

7

LECTURE 3 OPERATING SYSTEM STRUCTURES

