

 جامعة ألأنبار

كلية علوم الحاسوب وتكنولوجيا

 المعلومات

 قسم أنظمة شبكات الحاسوب

1

LECTURE 7 PROCESS MANAGEMENT: PROCESS SYNCHRONIZATION

Overview

• Consider the producer–consumer problem, with a bounded buffer used to

enable processes to share memory.

• The code for producer:

The code for consumer:

They may not function correctly when executed concurrently:

2

LECTURE 7 PROCESS MANAGEMENT: PROCESS SYNCHRONIZATION

• As an illustration, suppose that the value of the variable counter is currently

5 and that the producer and consumer processes concurrently execute the

statements “counter++” and “counter--”.

• Following the execution of these two statements, the value of the variable

counter may be 4, 5, or 6! The only correct result is counter == 5, which is

generated correctly if the producer and consumer execute separately.

• We can show that the value of counter may be incorrect as follows. Note that

the statement “counter++” and “counter--” may be implemented in machine

language (on a typical machine) as follows:

• register1 = counter

• register1 = register1 + 1

• counter = register1

• register2 = counter

• register2 = register2 − 1

• counter = register2

The concurrent execution of “counter++” and “counter--”:

T0: producer execute: register1 = counter {register1 = 5}

T1: producer execute: register1 = register1 + 1 {register1 = 6}

T2: consumer execute: register2 = counter {register2 = 5}

T3: consumer execute: register2 = register2 − 1 {register2 = 4}

T4: producer execute: counter = register1 {counter = 6}

T5: consumer execute: counter = register2 {counter = 4}

• We would arrive at this incorrect state because we allowed both processes to

manipulate the variable counter concurrently.

• A situation like this, where several processes access and manipulate the

same data concurrently and the outcome of the execution depends on the

particular order in which the access takes place, is called a race condition.

• To guard against the race condition above, we need to ensure that only one

process at a time can be manipulating the variable counter.

3

LECTURE 7 PROCESS MANAGEMENT: PROCESS SYNCHRONIZATION

• To make such a guarantee, we require that the processes be synchronized in

some way.

The Critical-Section Problem

4

LECTURE 7 PROCESS MANAGEMENT: PROCESS SYNCHRONIZATION

• 3. Bounded waiting. There exists a bound, or limit, on the number of times

that other processes are allowed to enter their critical sections after a process

has made a request to enter its critical section and before that request is

granted.

Mutex (Mutual Exclusion) Locks

• We use the mutex lock to protect critical regions and thus prevent race

conditions.

• That is, a process must acquire the lock before entering a critical section; it

releases the lock when it exits the critical section.

• The acquire() function acquires the lock, and the release() function

releases the lock.

5

LECTURE 7 PROCESS MANAGEMENT: PROCESS SYNCHRONIZATION

• The main disadvantage of the implementation given here is that it requires

busy waiting.

• While a process is in its critical section, any other process that tries to enter

its critical section must loop continuously in the call to acquire().

• In fact, this type of mutex lock is also called a spinlock.

• This continual looping is clearly a problem in a real multiprogramming

system, where a single CPU is shared among many processes.

• Busy waiting wastes CPU cycles that some other process might be able to

use productively.

Semaphores

• A semaphore S is an integer variable that is accessed only through two

standard operations: wait() and signal().

• Operating systems often distinguish between counting and binary

semaphores.

• The value of a counting semaphore can range over an unrestricted domain.

• The value of a binary semaphore can range only between 0 and 1. Thus,

binary semaphores behave similarly to mutex locks.

• Counting semaphores can be used to control access to a given resource

consisting of a finite number of instances.

• The semaphore is initialized to the number of resources available.

• Each process that wishes to use a resource performs a wait() operation on

the semaphore (thereby decrementing the count).

6

LECTURE 7 PROCESS MANAGEMENT: PROCESS SYNCHRONIZATION

• When a process releases a resource, it performs a signal() operation

(incrementing the count).

• When the count for the semaphore goes to 0, all resources are being used.

• After that, processes that wish to use a resource will block until the count

becomes greater than 0.

• We can also use semaphores to solve various synchronization problems.

• For example, consider two concurrently running processes: P1 with a

statement S1 and P2 with a statement S2.

• Suppose we require that S2 be executed only after S1 has completed.

• We can implement this scheme readily by letting P1 and P2 share a common

semaphore synch, initialized to 0.

• In process P1, we insert the statements

S1;

signal(synch);

• In process P2, we insert the statements

wait(synch);

S2;

• Because synch is initialized to 0, P2 will execute S2 only after P1 has

invoked signal(synch), which is after statement S1 has been executed.

Deadlocks and Starvation

• The implementation of a semaphore with a waiting queue may result in a

situation where two or more processes are waiting indefinitely for an event

that can be caused only by one of the waiting processes.

• The event in question is the execution of a signal() operation.

• When such a state is reached, these processes are said to be deadlocked.

• To illustrate this, consider a system consisting of two processes, P0 and P1,

each accessing two semaphores, S and Q, set to the value 1:

• Suppose that P0 executes wait(S) and then P1 executes wait(Q).

7

LECTURE 7 PROCESS MANAGEMENT: PROCESS SYNCHRONIZATION

• When P0 executes wait(Q), it must wait until P1 executes signal(Q).

• Similarly, when P1 executes wait(S), it must wait until P0 executes signal(S).

• Since these signal() operations cannot be executed, P0 and P1 are

deadlocked.

• We say that a set of processes is in a deadlocked state when every process

in the set is waiting for an event that can be caused only by another process

in the set.

• The events with which we are mainly concerned here are resource

acquisition and release.

• Another problem related to deadlocks is indefinite blocking or starvation,

a situation in which processes wait indefinitely within the semaphore.

• Indefinite blocking may occur if we remove processes from the list

associated with a semaphore in LIFO (last-in, first-out) order.

Classic Problems of Synchronization

• There are a number of synchronization problems as examples of a large class

of concurrency-control problems.

8

LECTURE 7 PROCESS MANAGEMENT: PROCESS SYNCHRONIZATION

• In the solutions to the problems, semaphores for synchronization is used.

These problems are:

1. The Bounded-Buffer Problem

2. The Readers–Writers Problem

3. The Dining-Philosophers Problem

The Dining-Philosophers Problem

• Consider five philosophers who spend their lives thinking and eating using

chopsticks.

• The dining-philosophers problem is considered a classic synchronization

problem because it is an example of a large class of concurrency-control

problems.

• It is a simple representation of the need to allocate several resources among

several processes in a deadlock-free and starvation-free manner.

• One simple solution is to represent each chopstick with a semaphore.

9

LECTURE 7 PROCESS MANAGEMENT: PROCESS SYNCHRONIZATION

• A philosopher tries to grab a chopstick by executing a wait() operation on

that semaphore.

• She releases her chopsticks by executing the signal() operation on the

appropriate semaphores.

• Thus, the shared data are semaphore chopstick[5]; where all the elements of

chopstick are initialized to 1. The structure of philosopher i is:

• Although this solution guarantees that no two neighbors are eating

simultaneously, it nevertheless must be rejected because it could create a

deadlock.

• Suppose that all five philosophers become hungry at the same time and each

grabs her left chopstick.

• All the elements of chopstick will now be equal to 0.

• When each philosopher tries to grab her right chopstick, she will be delayed

forever.

• Several possible solutions to the deadlock problem are available:

10

LECTURE 7 PROCESS MANAGEMENT: PROCESS SYNCHRONIZATION

• 1- Allow at most four philosophers to be sitting simultaneously at the table.

• 2- Allow a philosopher to pick up her chopsticks only if both chopsticks are

available (to do this, she must pick them up in a critical section).

• 3- Use an asymmetric solution—that is, an odd-numbered philosopher picks

up first her left chopstick and then her right chopstick, whereas an even

numbered philosopher picks up her right chopstick and then her left

chopstick.

