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Overview 

• In a single-processor system, only one process can run at a time. Others must 

wait until the CPU is free and can be rescheduled. 

• The objective of multiprogramming is to have some process running at all 

times, to maximize CPU utilization. 

• Almost all computer resources are scheduled before use.  

• The CPU is, of course, one of the primary computer resources. Thus, its 

scheduling is central to operating-system design. 

• Process execution consists of a cycle of CPU execution and I/O wait.  

• Process execution begins with a CPU burst. 

• That is followed by an I/O burst, which is followed by another CPU burst, 

then another I/O burst, and so on.  

• Eventually, the final CPU burst ends with a system request to terminate 

execution 

CPU Scheduler 

• Whenever the CPU becomes idle, the operating system must select one of 

the processes in the ready queue to be executed. 

• The selection process is carried out by the short-term scheduler, or CPU 

scheduler.  

• The scheduler selects a process from the processes in memory that are ready 

to execute and allocates the CPU to that process. 

• Note that the ready queue is not necessarily a first-in, first-out (FIFO) queue.  

• As we shall see when we consider the various scheduling algorithms, a ready 

queue can be implemented as a FIFO queue, a priority queue, a tree, or 

simply an unordered linked list.  

Preemptive Scheduling 

• CPU-scheduling decisions may take place under the following four 

circumstances: 
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1. When a process switches from the running state to the waiting state (for 

example, as the result of an I/O request). 

2. When a process switches from the running state to the ready state (for example, 

when an interrupt occurs) 

3. When a process switches from the waiting state to the ready state (for example, 

at completion of I/O) 

4. When a process terminates. 

• When scheduling takes place only under circumstances 1 and 4, we say that 

the scheduling scheme is nonpreemptive or cooperative. Otherwise, it is 

preemptive.  

• Under nonpreemptive scheduling, once CPU allocated to a process, the 

process keeps the CPU until it releases the CPU either by terminating or by 

switching to the waiting state. 

• This scheduling method (nonpreemptive) was used by Microsoft Windows 

3.x.  

• Windows 95 introduced preemptive scheduling, and all subsequent versions 

of Windows operating systems have used preemptive scheduling. 

• Unfortunately, preemptive scheduling can result in race conditions when 

data are shared among several processes. 

Dispatcher 

• Another component involved in the CPU-scheduling function is the 

dispatcher. 

• The dispatcher is the module that gives control of the CPU to the process 

selected by the short-term scheduler.  

• The dispatcher should be as fast as possible, since it is invoked during every 

process switch. 

• The time it takes for the dispatcher to stop one process and start another 

running is known as the dispatch latency. 

Scheduling Criteria 
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• Many criteria have been suggested for comparing CPU-scheduling 

algorithms. 

• CPU utilization. CPU utilization can range from 0 to 100 percent. In a real 

system, it should range from 40 percent (for a lightly loaded system) to 90 

percent (for a heavily loaded system). 

• Throughput. is the number of processes that are completed per time unit. 

For long processes, this rate may be one process per hour; for short 

transactions, it may be ten processes per second. 

• Turnaround time. The interval from the time of submission of a process to 

the time of completion. Turnaround time is the sum of the periods spent 

waiting to get into memory, waiting in the ready queue, executing on the 

CPU, and doing I/O. 

• Waiting time. is the sum of the periods spent waiting in the ready queue. 

• Response time. is the time from the submission of a request until the first 

response is produced. 

Scheduling Algorithms 

1) First-Come, First-Served Scheduling 

• By far the simplest CPU-scheduling algorithm is the first-come, first-

served (FCFS) scheduling algorithm.  

• With this scheme, the process that requests the CPU first is allocated the 

CPU first. 

• The implementation of the FCFS policy is easily managed with a FIFO 

queue.  

• When a process enters the ready queue, its PCB is linked onto the tail of the 

queue.  

• When the CPU is free, it is allocated to the process at the head of the queue.  

• The running process is then removed from the queue. 

 

• On the negative side, the average waiting time under the FCFS policy is 

often quite long. 
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• Consider the following set of processes that arrive at time 0, with the length 

of the CPU burst given in milliseconds: 

 

 

• In addition, consider the performance of FCFS scheduling in a dynamic 

situation. 
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• Assume we have one CPU-bound process and many I/O-bound processes. 

As the processes flow around the system, the following scenario may result. 

 The CPU-bound process will get and hold the CPU. During this time, all the 

other processes will finish their I/O and will move into the ready queue, 

waiting for the CPU.  

 While the processes wait in the ready queue, the I/O devices are idle. 

Eventually, the CPU-bound process finishes its CPU burst and moves to an 

I/O device. 

 All the I/O-bound processes, which have short CPU bursts, execute quickly 

and move back to the I/O queues. At this point, the CPU sits idle.  

 There is a convoy effect as all the other processes wait for the one big 

process to get off the CPU. 

 This effect results in lower CPU and device utilization than might be 

possible if the shorter processes were allowed to go first. 

 Note that the FCFS scheduling algorithm is nonpreemptive.  

 Once the CPU has been allocated to a process, that process keeps the CPU 

until it releases the CPU, either by terminating or by requesting I/O. 

  The FCFS algorithm is thus particularly troublesome for time-sharing 

systems, where it is important that each user get a share of the CPU at 

regular intervals.  

2) Shortest-Job-First Scheduling 

  

• This algorithm associates with each process the length of the process’s next 

CPU burst.  

• When the CPU is available, it is assigned to the process that has the smallest 

next CPU burst.  

• If the next CPU bursts of two processes are the same, FCFS scheduling is 

used to break the tie. 
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• The SJF scheduling algorithm is provably optimal, in that it gives the 

minimum average waiting time for a given set of processes. 

• Moving a short process before a long one decreases the waiting time of the 

short process more than it increases the waiting time of the long process. 

Consequently, the average waiting time decreases. 

• The real difficulty with the SJF algorithm is knowing the length of the next 

CPU request.  

• It cannot be implemented, there is no way to know the length of the next 

CPU burst. One approach to this problem is to try to approximate SJF 

scheduling. 

3) Priority Scheduling 

• A priority is associated with each process, and the CPU is allocated to the 

process with the highest priority. Equal-priority processes are scheduled in 

FCFS order. 
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• In this text, we assume that low numbers represent high priority. 

• As an example, consider the following set of processes, assumed to have 

arrived at time 0 in the order P1, P2, · · ·, P5, with the length of the CPU 

burst given in milliseconds: 

 

 

• Priority scheduling can be either preemptive or nonpreemptive.  

• When a process arrives at the ready queue, its priority is compared with the 

priority of the currently running process. 
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• A preemptive priority scheduling algorithm will preempt the CPU if the 

priority of the newly arrived process is higher than the priority of the 

currently running process. 

• A nonpreemptive priority scheduling algorithm will simply put the new 

process at the head of the ready queue. 

• A major problem with priority scheduling algorithms is indefinite blocking, 

or starvation.  

• A process that is ready to run but waiting for the CPU can be considered 

blocked.   

• A priority scheduling algorithm can leave some low priority processes 

waiting indefinitely. 

• In a heavily loaded computer system, a steady stream of higher-priority 

processes can prevent a low-priority process from ever getting the CPU. 

• A solution to the problem of indefinite blockage of low-priority processes is 

aging.  

• Aging involves gradually increasing the priority of processes that wait in the 

system for a long time. 

4) Round-Robin Scheduling 

• The round-robin (RR) scheduling algorithm is designed especially for 

timesharing systems.  

• It is similar to FCFS scheduling, but preemption is added to enable the 

system to switch between processes.  

• A small unit of time, called a time quantum or time slice, is defined. 

• A time quantum is generally from 10 to 100 milliseconds in length.  

• The ready queue is treated as a circular queue. 

• The CPU scheduler goes around the ready queue, allocating the CPU to each 

process for a time interval of up to 1 time quantum. 

• The average waiting time under the RR policy is often long.  

• Consider the following set of processes that arrive at time 0, with the length 

of the CPU burst given in milliseconds: 
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• If we use a time quantum of 4 milliseconds, then process P1 gets the first 4 

milliseconds.  

• Since it requires another 20 milliseconds, it is preempted after the first time 

quantum, and the CPU is given to the next process in the queue, process P2.  

• Process P2 does not need 4 milliseconds, so it quits before its time quantum 

expires.  

• The CPU is then given to the next process, process P3. Once each process 

has received 1 time quantum, the CPU is returned to process P1 for an 

additional time quantum.  

• The resulting RR schedule is as follows: 

 

• Calculate the average waiting time for this schedule.  

• P1 waits for 6 milliseconds (10 - 4), P2 waits for 4 milliseconds, and P3 

waits for 7 milliseconds. 

• Thus, the average waiting time is 17/3 = 5.66 ms. 

• RR scheduling algorithm is thus preemptive. 

• The performance of the RR algorithm depends heavily on the size of the 

time quantum.  

• If the time quantum is extremely large, the RR policy is the same as the 

FCFS policy.  
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• In contrast, if the time quantum is extremely small (say, 1 millisecond), the 

RR approach can result in a large number of context switches. 

 


