

 جامعة ألأنبار

كلية علوم الحاسوب وتكنولوجيا

 المعلومات

 قسم أنظمة شبكات الحاسوب

1

LECTURE 8 PROCESS MANAGEMENT: CPU SCHEDULING

Overview

• In a single-processor system, only one process can run at a time. Others must

wait until the CPU is free and can be rescheduled.

• The objective of multiprogramming is to have some process running at all

times, to maximize CPU utilization.

• Almost all computer resources are scheduled before use.

• The CPU is, of course, one of the primary computer resources. Thus, its

scheduling is central to operating-system design.

• Process execution consists of a cycle of CPU execution and I/O wait.

• Process execution begins with a CPU burst.

• That is followed by an I/O burst, which is followed by another CPU burst,

then another I/O burst, and so on.

• Eventually, the final CPU burst ends with a system request to terminate

execution

CPU Scheduler

• Whenever the CPU becomes idle, the operating system must select one of

the processes in the ready queue to be executed.

• The selection process is carried out by the short-term scheduler, or CPU

scheduler.

• The scheduler selects a process from the processes in memory that are ready

to execute and allocates the CPU to that process.

• Note that the ready queue is not necessarily a first-in, first-out (FIFO) queue.

• As we shall see when we consider the various scheduling algorithms, a ready

queue can be implemented as a FIFO queue, a priority queue, a tree, or

simply an unordered linked list.

Preemptive Scheduling

• CPU-scheduling decisions may take place under the following four

circumstances:

2

LECTURE 8 PROCESS MANAGEMENT: CPU SCHEDULING

1. When a process switches from the running state to the waiting state (for

example, as the result of an I/O request).

2. When a process switches from the running state to the ready state (for example,

when an interrupt occurs)

3. When a process switches from the waiting state to the ready state (for example,

at completion of I/O)

4. When a process terminates.

• When scheduling takes place only under circumstances 1 and 4, we say that

the scheduling scheme is nonpreemptive or cooperative. Otherwise, it is

preemptive.

• Under nonpreemptive scheduling, once CPU allocated to a process, the

process keeps the CPU until it releases the CPU either by terminating or by

switching to the waiting state.

• This scheduling method (nonpreemptive) was used by Microsoft Windows

3.x.

• Windows 95 introduced preemptive scheduling, and all subsequent versions

of Windows operating systems have used preemptive scheduling.

• Unfortunately, preemptive scheduling can result in race conditions when

data are shared among several processes.

Dispatcher

• Another component involved in the CPU-scheduling function is the

dispatcher.

• The dispatcher is the module that gives control of the CPU to the process

selected by the short-term scheduler.

• The dispatcher should be as fast as possible, since it is invoked during every

process switch.

• The time it takes for the dispatcher to stop one process and start another

running is known as the dispatch latency.

Scheduling Criteria

3

LECTURE 8 PROCESS MANAGEMENT: CPU SCHEDULING

• Many criteria have been suggested for comparing CPU-scheduling

algorithms.

• CPU utilization. CPU utilization can range from 0 to 100 percent. In a real

system, it should range from 40 percent (for a lightly loaded system) to 90

percent (for a heavily loaded system).

• Throughput. is the number of processes that are completed per time unit.

For long processes, this rate may be one process per hour; for short

transactions, it may be ten processes per second.

• Turnaround time. The interval from the time of submission of a process to

the time of completion. Turnaround time is the sum of the periods spent

waiting to get into memory, waiting in the ready queue, executing on the

CPU, and doing I/O.

• Waiting time. is the sum of the periods spent waiting in the ready queue.

• Response time. is the time from the submission of a request until the first

response is produced.

Scheduling Algorithms

1) First-Come, First-Served Scheduling

• By far the simplest CPU-scheduling algorithm is the first-come, first-

served (FCFS) scheduling algorithm.

• With this scheme, the process that requests the CPU first is allocated the

CPU first.

• The implementation of the FCFS policy is easily managed with a FIFO

queue.

• When a process enters the ready queue, its PCB is linked onto the tail of the

queue.

• When the CPU is free, it is allocated to the process at the head of the queue.

• The running process is then removed from the queue.

• On the negative side, the average waiting time under the FCFS policy is

often quite long.

4

LECTURE 8 PROCESS MANAGEMENT: CPU SCHEDULING

• Consider the following set of processes that arrive at time 0, with the length

of the CPU burst given in milliseconds:

• In addition, consider the performance of FCFS scheduling in a dynamic

situation.

5

LECTURE 8 PROCESS MANAGEMENT: CPU SCHEDULING

• Assume we have one CPU-bound process and many I/O-bound processes.

As the processes flow around the system, the following scenario may result.

 The CPU-bound process will get and hold the CPU. During this time, all the

other processes will finish their I/O and will move into the ready queue,

waiting for the CPU.

 While the processes wait in the ready queue, the I/O devices are idle.

Eventually, the CPU-bound process finishes its CPU burst and moves to an

I/O device.

 All the I/O-bound processes, which have short CPU bursts, execute quickly

and move back to the I/O queues. At this point, the CPU sits idle.

 There is a convoy effect as all the other processes wait for the one big

process to get off the CPU.

 This effect results in lower CPU and device utilization than might be

possible if the shorter processes were allowed to go first.

 Note that the FCFS scheduling algorithm is nonpreemptive.

 Once the CPU has been allocated to a process, that process keeps the CPU

until it releases the CPU, either by terminating or by requesting I/O.

 The FCFS algorithm is thus particularly troublesome for time-sharing

systems, where it is important that each user get a share of the CPU at

regular intervals.

2) Shortest-Job-First Scheduling

• This algorithm associates with each process the length of the process’s next

CPU burst.

• When the CPU is available, it is assigned to the process that has the smallest

next CPU burst.

• If the next CPU bursts of two processes are the same, FCFS scheduling is

used to break the tie.

6

LECTURE 8 PROCESS MANAGEMENT: CPU SCHEDULING

• The SJF scheduling algorithm is provably optimal, in that it gives the

minimum average waiting time for a given set of processes.

• Moving a short process before a long one decreases the waiting time of the

short process more than it increases the waiting time of the long process.

Consequently, the average waiting time decreases.

• The real difficulty with the SJF algorithm is knowing the length of the next

CPU request.

• It cannot be implemented, there is no way to know the length of the next

CPU burst. One approach to this problem is to try to approximate SJF

scheduling.

3) Priority Scheduling

• A priority is associated with each process, and the CPU is allocated to the

process with the highest priority. Equal-priority processes are scheduled in

FCFS order.

7

LECTURE 8 PROCESS MANAGEMENT: CPU SCHEDULING

• In this text, we assume that low numbers represent high priority.

• As an example, consider the following set of processes, assumed to have

arrived at time 0 in the order P1, P2, · · ·, P5, with the length of the CPU

burst given in milliseconds:

• Priority scheduling can be either preemptive or nonpreemptive.

• When a process arrives at the ready queue, its priority is compared with the

priority of the currently running process.

8

LECTURE 8 PROCESS MANAGEMENT: CPU SCHEDULING

• A preemptive priority scheduling algorithm will preempt the CPU if the

priority of the newly arrived process is higher than the priority of the

currently running process.

• A nonpreemptive priority scheduling algorithm will simply put the new

process at the head of the ready queue.

• A major problem with priority scheduling algorithms is indefinite blocking,

or starvation.

• A process that is ready to run but waiting for the CPU can be considered

blocked.

• A priority scheduling algorithm can leave some low priority processes

waiting indefinitely.

• In a heavily loaded computer system, a steady stream of higher-priority

processes can prevent a low-priority process from ever getting the CPU.

• A solution to the problem of indefinite blockage of low-priority processes is

aging.

• Aging involves gradually increasing the priority of processes that wait in the

system for a long time.

4) Round-Robin Scheduling

• The round-robin (RR) scheduling algorithm is designed especially for

timesharing systems.

• It is similar to FCFS scheduling, but preemption is added to enable the

system to switch between processes.

• A small unit of time, called a time quantum or time slice, is defined.

• A time quantum is generally from 10 to 100 milliseconds in length.

• The ready queue is treated as a circular queue.

• The CPU scheduler goes around the ready queue, allocating the CPU to each

process for a time interval of up to 1 time quantum.

• The average waiting time under the RR policy is often long.

• Consider the following set of processes that arrive at time 0, with the length

of the CPU burst given in milliseconds:

9

LECTURE 8 PROCESS MANAGEMENT: CPU SCHEDULING

• If we use a time quantum of 4 milliseconds, then process P1 gets the first 4

milliseconds.

• Since it requires another 20 milliseconds, it is preempted after the first time

quantum, and the CPU is given to the next process in the queue, process P2.

• Process P2 does not need 4 milliseconds, so it quits before its time quantum

expires.

• The CPU is then given to the next process, process P3. Once each process

has received 1 time quantum, the CPU is returned to process P1 for an

additional time quantum.

• The resulting RR schedule is as follows:

• Calculate the average waiting time for this schedule.

• P1 waits for 6 milliseconds (10 - 4), P2 waits for 4 milliseconds, and P3

waits for 7 milliseconds.

• Thus, the average waiting time is 17/3 = 5.66 ms.

• RR scheduling algorithm is thus preemptive.

• The performance of the RR algorithm depends heavily on the size of the

time quantum.

• If the time quantum is extremely large, the RR policy is the same as the

FCFS policy.

10

LECTURE 8 PROCESS MANAGEMENT: CPU SCHEDULING

• In contrast, if the time quantum is extremely small (say, 1 millisecond), the

RR approach can result in a large number of context switches.

