

 جامعة ألأنبار

كلية علوم الحاسوب وتكنولوجيا

 المعلومات

 قسم أنظمة شبكات الحاسوب

1

LECTURE 9 PROCESS MANAGEMENT: DEADLOCKS

Overview

• In a multiprogramming environment, several processes may compete for a

finite number of resources.

• A process requests resources; if the resources are not available at that time,

the process enters a waiting state.

• Sometimes, a waiting process is never again able to change state, because

the resources it has requested are held by other waiting processes.

• This situation is called a deadlock.

2

LECTURE 9 PROCESS MANAGEMENT: DEADLOCKS

Resource-Allocation Graph

• Deadlocks can be described more precisely in terms of a directed graph

called a system resource-allocation graph.

• This graph consists of a set of vertices V and a set of edges E.

• The set of vertices V is partitioned into two different types of nodes: P = {P1,

P2, ..., Pn}, the set consisting of all the active processes in the system,

• and R = {R1, R2, ..., Rm}, the set consisting of all resource types in the

system.

3

LECTURE 9 PROCESS MANAGEMENT: DEADLOCKS

• Given the definition of a resource-allocation graph, it can be shown that,

1. If the graph contains no cycles, then no process in the system is deadlocked.

2. If the graph does contain a cycle, then a deadlock may exist.

3. If each resource type has exactly one instance, then a cycle implies that a

deadlock has occurred.

4. If the cycle involves only a set of resource types, each of which has only a

single instance, then a deadlock has occurred. Each process involved in the

cycle is deadlocked. In this case, a cycle in the graph is both a necessary and

a sufficient condition for the existence of deadlock.

5. If each resource type has several instances, then a cycle does not necessarily

imply that a deadlock has occurred. In this case, a cycle in the graph is a

necessary but not a sufficient condition for the existence of deadlock.

Example

4

LECTURE 9 PROCESS MANAGEMENT: DEADLOCKS

5

LECTURE 9 PROCESS MANAGEMENT: DEADLOCKS

Methods for Handling Deadlocks

1. We can use a protocol to prevent or avoid deadlocks, ensuring that the

system will never enter a deadlocked state.

2. We can allow the system to enter a deadlocked state, detect it, and recover.

3. We can ignore the problem altogether and pretend that deadlocks never

occur in the system.

Deadlock Prevention

• For a deadlock to occur, each of the four necessary conditions must hold.

• By ensuring that at least one of these conditions cannot hold, we can prevent

the occurrence of a deadlock.

• Mutual Exclusion: The mutual exclusion condition must hold.

• That is, at least one resource must be non sharable.

6

LECTURE 9 PROCESS MANAGEMENT: DEADLOCKS

• Sharable resources, in contrast, do not require mutually exclusive access and

thus cannot be involved in a deadlock. Read-only files are a good example

of a sharable resource.

• Hold and Wait: To ensure that the hold-and-wait condition never occurs in

the system, we must guarantee that, whenever a process requests a resource,

it does not hold any other resources.

• One protocol that we can use requires each process to request and be

allocated all its resources before it begins execution.

• Number of required resources is not known until running

time!!!

• Resources will not be used optimally!!!

• Circular Wait: The another condition for deadlocks is the circular-wait

condition.

• One way to ensure that this condition never holds is to impose a total

ordering of all resource types and to require that each process requests

resources in an increasing order of enumeration.

• No Preemption: The third necessary condition for deadlocks is that there be

no preemption of resources that have already been allocated.

• To ensure that this condition does not hold, we can use the following

protocol.

7

LECTURE 9 PROCESS MANAGEMENT: DEADLOCKS

Deadlock Avoidance

8

LECTURE 9 PROCESS MANAGEMENT: DEADLOCKS

• To illustrate this algorithm, we consider the resource-allocation graph of

Figure 7.7.

• Suppose that P2 requests R2. Although R2 is currently free, we cannot

allocate it to P2, since this action will create a cycle in the graph (Figure

7.8). A cycle, as mentioned, indicates that the system is in an unsafe state. If

P1 requests R2, and P2 requests R1, then a deadlock will occur.

Banker’s Algorithm

• The resource-allocation-graph algorithm is not applicable to a system with

multiple instances of each resource type.

• The name (Banker) was chosen because the algorithm could be used in a

banking system to ensure that the bank never allocated its available cash in

such a way that it could no longer satisfy the needs of all its customers.

• When a new process enters the system, it must declare the maximum number

of instances of each resource type that it may need.

• This number may not exceed the total number of resources in the system.

9

LECTURE 9 PROCESS MANAGEMENT: DEADLOCKS

• When a user requests a set of resources, the system must determine whether

the allocation of these resources will leave the system in a safe state.

• If it will, the resources are allocated; otherwise, the process must wait until

some other process releases enough resources.

• We need the following data structures, where n is the number of processes in

the system and m is the number of resource types:

• Available. A vector of length m indicates the number of available resources

of each type. If Available[j] equals k, then k instances of resource type Rj

are available.

• Max. An n × m matrix defines the maximum demand of each process.

• If Max[i][j] equals k, then process Pi may request at most k instances of

resource type Rj .

• Allocation. An n × m matrix defines the number of resources of each type

currently allocated to each process. If Allocation[i][j] equals k, then process

Pi is currently allocated k instances of resource type Rj .

• Need. An n × m matrix indicates the remaining resource need of each

process. If Need[i][j] equals k, then process Pi may need k more instances of

resource type Rj to complete its task.

• Note that Need[i][j] equals Max[i][j] − Allocation[i][j].

• Let X and Y be vectors of length n. We say that X ≤ Y if and only if X[i] ≤

Y[i] for all i = 1, 2, ..., n. For example, if X = (1,7,3,2) and Y = (0,3,2,1),

then Y ≤ X. In addition, Y < X if Y ≤ X and Y = X.

• Safety Algorithm

• We can now present the algorithm for finding out whether or not a system is

in a safe state:

• 1. Let Work and Finish be vectors of length m and n, respectively.

Initialize:

 Work = Available and Finish[i] = false for i = 0, 1, ..., n − 1.

• 2. Find an index i such that both

• a. Finish[i] == false , b. Needi ≤ Work

10

LECTURE 9 PROCESS MANAGEMENT: DEADLOCKS

• If no such i exists, go to step 4.

• 3. Work =Work + Allocationi , Finish[i] = true

• Go to step 2.

• 4. If Finish[i] == true for all i, then the system is in a safe state.

• Resource-Request Algorithm

• The algorithm for determining whether requests can be safely granted.

• Let Requesti be the request vector for process Pi .

• If Requesti [j] == k, then process Pi wants k instances of resource type Rj .

• When a request for resources is made by process Pi , the following actions

are taken:

• 1. If Requesti ≤ Needi , go to step 2. Otherwise, raise an error condition,

since the process has exceeded its maximum claim.

• 2. If Requesti ≤ Available, go to step 3. Otherwise, Pi must wait, since the

resources are not available.

• 3. Have the system pretend to have allocated the requested resources to

process Pi by modifying the state as follows:

• Available = Available – Requesti ;

• Allocationi = Allocationi + Requesti ;

• Needi = Needi –Requesti ;

• If the resulting resource-allocation state is safe, the transaction is completed,

and process Pi is allocated its resources.

• However, if the new state is unsafe, then Pi must wait for Requesti , and the

old resource-allocation state is restored.

• An Illustrative Example

• To illustrate the use of the banker’s algorithm, consider a system with five

processes P0 through P4 and three resource types A, B, and C. Resource

type A has ten instances, resource type B has five instances, and resource

type C has seven instances. Suppose that, at time T0, the following snapshot

of the system has been taken:

11

LECTURE 9 PROCESS MANAGEMENT: DEADLOCKS

• The content of the matrix Need is defined to be Max − Allocation and is as

follows:

• We claim that the system is currently in a safe state.

• Indeed, the sequence <P1, P3, P4, P2, P0> satisfies the safety criteria.

• Suppose now that process P1 requests one additional instance of resource

type A and two instances of resource type C, so Request1 = (1,0,2). To

decide whether this request can be immediately granted, we first check that

Request1 ≤ Available—that is, that

• (1,0,2) ≤ (3,3,2), which is true. We then pretend that this request has been

fulfilled, and we arrive at the following new state:

12

LECTURE 9 PROCESS MANAGEMENT: DEADLOCKS

• We must determine whether this new system state is safe.

• To do so, we execute our safety algorithm and find that the sequence <P1,

P3, P4, P0, P2> satisfies the safety requirement.

• Hence, we can immediately grant the request of process P1.

• You should be able to see, however, that when the system is in this state, a

request for (3,3,0) by P4 cannot be granted, since the resources are not

available.

• Furthermore, a request for (0,2,0) by P0 cannot be granted, even though the

resources are available, since the resulting state is unsafe.

