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LECTURE 9                                                                                              PROCESS MANAGEMENT: DEADLOCKS 

Overview 

• In a multiprogramming environment, several processes may compete for a 

finite number of resources.  

• A process requests resources; if the resources are not available at that time, 

the process enters a waiting state.  

• Sometimes, a waiting process is never again able to change state, because 

the resources it has requested are held by other waiting processes. 

• This situation is called a deadlock. 
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Resource-Allocation Graph 

• Deadlocks can be described more precisely in terms of a directed graph 

called a system resource-allocation graph.  

• This graph consists of a set of vertices V and a set of edges E. 

• The set of vertices V is partitioned into two different types of nodes: P = {P1, 

P2, ..., Pn}, the set consisting of all the active processes in the system,  

• and R = {R1, R2, ..., Rm}, the set consisting of all resource types in the 

system. 
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• Given the definition of a resource-allocation graph, it can be shown that,  

1. If the graph contains no cycles, then no process in the system is deadlocked.  

2. If the graph does contain a cycle, then a deadlock may exist. 

3. If each resource type has exactly one instance, then a cycle implies that a 

deadlock has occurred.  

4. If the cycle involves only a set of resource types, each of which has only a 

single instance, then a deadlock has occurred. Each process involved in the 

cycle is deadlocked. In this case, a cycle in the graph is both a necessary and 

a sufficient condition for the existence of deadlock. 

5. If each resource type has several instances, then a cycle does not necessarily 

imply that a deadlock has occurred. In this case, a cycle in the graph is a 

necessary but not a sufficient condition for the existence of deadlock. 

Example 
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Methods for Handling Deadlocks 

1. We can use a protocol to prevent or avoid deadlocks, ensuring that the 

system will never enter a deadlocked state. 

2. We can allow the system to enter a deadlocked state, detect it, and recover. 

3. We can ignore the problem altogether and pretend that deadlocks never 

occur in the system. 

Deadlock Prevention 

• For a deadlock to occur, each of the four necessary conditions must hold.  

• By ensuring that at least one of these conditions cannot hold, we can prevent 

the occurrence of a deadlock. 

• Mutual Exclusion: The mutual exclusion condition must hold.  

• That is, at least one resource must be non sharable. 
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• Sharable resources, in contrast, do not require mutually exclusive access and 

thus cannot be involved in a deadlock. Read-only files are a good example 

of a sharable resource. 

• Hold and Wait: To ensure that the hold-and-wait condition never occurs in 

the system, we must guarantee that, whenever a process requests a resource, 

it does not hold any other resources.  

• One protocol that we can use requires each process to request and be 

allocated all its resources before it begins execution. 

• Number of required resources is not known until running 

time!!! 

• Resources will not be used optimally!!!  

• Circular Wait: The another condition for deadlocks is the circular-wait 

condition.  

• One way to ensure that this condition never holds is to impose a total 

ordering of all resource types and to require that each process requests 

resources in an increasing order of enumeration. 

 

• No Preemption: The third necessary condition for deadlocks is that there be 

no preemption of resources that have already been allocated.  

• To ensure that this condition does not hold, we can use the following 

protocol.  



 

7 
 

LECTURE 9                                                                                              PROCESS MANAGEMENT: DEADLOCKS 

 

Deadlock Avoidance 
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• To illustrate this algorithm, we consider the resource-allocation graph of 

Figure 7.7.  

• Suppose that P2 requests R2. Although R2 is currently free, we cannot 

allocate it to P2, since this action will create a cycle in the graph (Figure 

7.8). A cycle, as mentioned, indicates that the system is in an unsafe state. If 

P1 requests R2, and P2 requests R1, then a deadlock will occur. 

 

Banker’s Algorithm 

• The resource-allocation-graph algorithm is not applicable to a system with 

multiple instances of each resource type. 

• The name (Banker) was chosen because the algorithm could be used in a 

banking system to ensure that the bank never allocated its available cash in 

such a way that it could no longer satisfy the needs of all its customers. 

• When a new process enters the system, it must declare the maximum number 

of instances of each resource type that it may need.  

• This number may not exceed the total number of resources in the system.  
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• When a user requests a set of resources, the system must determine whether 

the allocation of these resources will leave the system in a safe state.  

• If it will, the resources are allocated; otherwise, the process must wait until 

some other process releases enough resources. 

• We need the following data structures, where n is the number of processes in 

the system and m is the number of resource types: 

• Available. A vector of length m indicates the number of available resources 

of each type. If Available[j] equals k, then k instances of resource type Rj 

are available. 

• Max. An n × m matrix defines the maximum demand of each process. 

• If Max[i][j] equals k, then process Pi may request at most k instances of 

resource type Rj . 

• Allocation. An n × m matrix defines the number of resources of each type 

currently allocated to each process. If Allocation[i][j] equals k, then process 

Pi is currently allocated k instances of resource type Rj . 

• Need. An n × m matrix indicates the remaining resource need of each 

process. If Need[i][j] equals k, then process Pi may need k more instances of 

resource type Rj to complete its task. 

• Note that Need[i][j] equals Max[i][j] − Allocation[i][j]. 

• Let X and Y be vectors of length n. We say that X ≤ Y if and only if X[i] ≤ 

Y[i] for all i = 1, 2, ..., n. For example, if X = (1,7,3,2) and Y = (0,3,2,1), 

then Y ≤ X. In addition, Y < X if Y ≤ X and Y = X. 

• Safety Algorithm 

• We can now present the algorithm for finding out whether or not a system is 

in a safe state: 

• 1. Let Work and Finish be vectors of length m and n, respectively.  

Initialize: 

              Work = Available and Finish[i] = false for i = 0, 1, ..., n − 1. 

• 2. Find an index i such that both 

• a. Finish[i] == false , b. Needi ≤ Work 
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• If no such i exists, go to step 4. 

• 3. Work =Work + Allocationi , Finish[i] = true 

• Go to step 2. 

• 4. If Finish[i] == true for all i, then the system is in a safe state. 

• Resource-Request Algorithm 

• The algorithm for determining whether requests can be safely granted. 

• Let Requesti be the request vector for process Pi .  

• If Requesti [ j] == k, then process Pi wants k instances of resource type Rj .  

• When a request for resources is made by process Pi , the following actions 

are taken: 

• 1. If Requesti ≤ Needi , go to step 2. Otherwise, raise an error condition, 

since the process has exceeded its maximum claim. 

• 2. If Requesti ≤ Available, go to step 3. Otherwise, Pi must wait, since the 

resources are not available. 

• 3. Have the system pretend to have allocated the requested resources to 

process Pi by modifying the state as follows: 

• Available = Available – Requesti ; 

• Allocationi = Allocationi + Requesti ; 

• Needi = Needi –Requesti ; 

• If the resulting resource-allocation state is safe, the transaction is completed, 

and process Pi is allocated its resources.  

• However, if the new state is unsafe, then Pi must wait for Requesti , and the 

old resource-allocation state is restored. 

• An Illustrative Example 

• To illustrate the use of the banker’s algorithm, consider a system with five 

processes P0 through P4 and three resource types A, B, and C. Resource 

type A has ten instances, resource type B has five instances, and resource 

type C has seven instances. Suppose that, at time T0, the following snapshot 

of the system has been taken: 
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• The content of the matrix Need is defined to be Max − Allocation and is as 

follows: 

 

• We claim that the system is currently in a safe state.  

• Indeed, the sequence <P1, P3, P4, P2, P0> satisfies the safety criteria.  

• Suppose now that process P1 requests one additional instance of resource 

type A and two instances of resource type C, so Request1 = (1,0,2). To 

decide whether this request can be immediately granted, we first check that 

Request1 ≤ Available—that is, that 

• (1,0,2) ≤ (3,3,2), which is true. We then pretend that this request has been 

fulfilled, and we arrive at the following new state: 
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• We must determine whether this new system state is safe.  

• To do so, we execute our safety algorithm and find that the sequence <P1, 

P3, P4, P0, P2> satisfies the safety requirement.  

• Hence, we can immediately grant the request of process P1. 

• You should be able to see, however, that when the system is in this state, a 

request for (3,3,0) by P4 cannot be granted, since the resources are not 

available. 

• Furthermore, a request for (0,2,0) by P0 cannot be granted, even though the 

resources are available, since the resulting state is unsafe. 

 


