

 جامعة ألأنبار

كلية علوم الحاسوب وتكنولوجيا

 المعلومات

 قسم أنظمة شبكات الحاسوب

1

LECTURE 10 MEMORYMANAGEMENT

Introduction

• The Completing a memory access may take many cycles of the CPU clock

• The Separate per-process memory space protects the processes from each

other and is fundamental to having multiple processes loaded in memory for

concurrent execution.

• To separate memory spaces, we need the ability to determine the range of

legal addresses that the process may access and to ensure that the process

can access only these legal addresses.

• We can provide this protection by using two registers, usually a base and a

limit, as illustrated in Figure 8.1.

• The base register holds the smallest legal physical memory address; the

limit register specifies the size of the range.

• For example, if the base register holds 300040 and the limit register is

120900, then the program can legally access all addresses from 300040

through 420939 (inclusive).

2

LECTURE 10 MEMORYMANAGEMENT

• Protection of memory space is accomplished by having the CPU hardware

compare every address generated in user mode with the registers.

Address Binding

• Most systems allow a user process to reside in any part of the physical

memory.

• In most cases, a user program goes through several steps before being

executed (Figure 8.3).

• Addresses may be represented in different ways during these steps.

• Addresses in the source program are generally symbolic (such as the

variable count).

• A compiler typically binds these symbolic addresses to relocatable

addresses.

• The linkage editor or loader in turn binds the relocatable addresses to

absolute addresses (such as 74014).

• Each binding is a mapping from one address space to another.

3

LECTURE 10 MEMORYMANAGEMENT

Logical Versus Physical Address Space

• An address generated by the CPU is commonly referred to as a logical

address.

• An address seen by the memory unit—that is, the one loaded into the

memory-address register of the memory—is commonly referred to as a

physical address.

• The set of all logical addresses generated by a program is a logical (virtual)

address space.

4

LECTURE 10 MEMORYMANAGEMENT

• The set of all physical addresses corresponding to these logical addresses is

a physical address space.

• Thus, in the execution-time address-binding scheme, the logical and physical

address spaces differ.

• The run-time mapping from virtual to physical addresses is done by a

hardware device called the memory-management unit (MMU).

• The base register is called a relocation register.

• The value in the relocation register is added to every address generated by a

user process at the time the address is sent to memory (see Figure 8.4).

• The user program never sees the real physical addresses.

Dynamic Loading

5

LECTURE 10 MEMORYMANAGEMENT

• The size of a process is limited to the size of physical memory.

• To obtain better memory-space utilization, we can use dynamic loading.

• With dynamic loading, a routine is not loaded until it is called.

• All routines are kept on disk in a relocatable load format.

• The main program is loaded into memory and is executed.

• When a routine needs to call another routine, the calling routine first checks

to see whether the other routine has been loaded.

• If it has not, the relocatable linking loader is called to load the desired

routine into memory and to update the program’s address tables to reflect

this change.

Memory partitioning

• One of the simplest techniques for memory management.

• The user part of the memory must be subdivided to accommodate multiple

processes.

• Includes fixed partitioning and dynamic partitioning.

• Fixed Partitioning:

• OS occupies some fixed portion of the main memory and the rest of main

memory is available for use by multiple processes.

• Partition sizes: Equal-size partitions and unequal size partitions.

6

LECTURE 10 MEMORYMANAGEMENT

• Any process whose size is less than or equal to partition size can be loaded

into any available partition.

• Each partition may contain exactly one process.

• Thus, the degree of multiprogramming is bound by the number of partitions.

• When a partition is free, a process is selected from the input queue and is

loaded into the free partition. When the process terminates, the partition

becomes available for another process.

• Program bigger than partition size!

7

LECTURE 10 MEMORYMANAGEMENT

– Overlay: only a portion of a program need be in a main memory at

any one time.

• Inefficiency. Any program no matter how small occupies an

 entire partition (Internal fragmentation) (wasted space internal to

 the partition).

• Unequal-size partition can lessen those problems.

• Dynamic Partitioning:

• The partitions are of variable length and numbers.

• The process allocated exactly as much memory as it requires.

• Example of using 64 Mbyte in dynamic partitioning.

8

LECTURE 10 MEMORYMANAGEMENT

• D: small hole.

• E: swap out process 2.

• F: another small hole.

• G: Swap out process 1.

• End with a lot of small holes in memory.

• External Fragmentation: memory that is external to all partitions

becomes increasingly fragmented.

9

LECTURE 10 MEMORYMANAGEMENT

• Compaction is used to overcome external fragmentation

• OS shift the processes from time to time to be contiguous. (time consuming).

• Compaction needs dynamic relocation capability: move program from one

region to another in memory without invalidating the memory referencing in

the program.

Memory Allocation

• One of the simplest methods for allocating memory is to divide memory into

several fixed-sized partitions.

• There are many solutions to select free holes from available holes in

memory:

• First-fit: Allocate the first hole that is big enough.

– Can start searching at beginning of set of holes or where last first-fit

search ended.

– Stop when sufficient size is encountered.

• Best-fit: Allocate the smallest hole that is ‘just’ big enough

– In Best-Fit, we must search entire list, unless list is ordered by size.

– Best-Fit produces the smallest leftover hole.

• Worst-fit: Allocate the largest hole; must also search entire list (unless list

is sorted).

Quiz

• The diagram shows an example of memory configuration (dynamic

partitioning) after number of placement and swapping out operations have

been carried out. Addresses go from left to right. Grey areas are processes

while the white ones indicate the free memory blocks. The last process

placed is (P6).

•

10

LECTURE 10 MEMORYMANAGEMENT

• A new process (P9) (3M Byte) allocation request must be satisfied next.

Indicate the intervals of memory where partitions will be created for new

process using (First-fit, best-fit, next-fit) algorithms. For each algorithm,

draw a horizontal segment under the memory strip and label it clearly. Also,

determine the size of generated fragment (If it is generated) after each

placement algorithm.

