Wet Programming Lectures (PHP)

5- PHP preg_match(): Regular Expressions (Regex)

What is Regular expression in PHP?
PHP Regular Expression also known as regex are powerful pattern matching

algorithm that can be performed in a single expression. Regular expressions use
arithmetic operators such as (+,-,) to create complex expressions. They can help

you accomplish tasks such as validating email addresses, IP address etc.

Why use regular expressions

PHP Regular expressions simplify identifying patterns in string data by
calling a single function. This saves us coding time.

When validating user input such as email address, domain names, telephone
numbers, IP addresses,

Highlighting keywords in search results

When creating a custom HTML template. Regex in PHP can be used to

identify the template tags and replace them with actual data.

Built-in Regular expression Functions in PHP
PHP has built in functions that allow us to work with regular functions. The

commonly used regular expression functions in PHP.

preg_match() in PHP — this function is used to perform pattern matching in
PHP on a string. It returns true if a match is found and false if a match is not
found.

preg_split() in PHP — this function is used to perform a pattern match on a
string and then split the results into a numeric array

preg_replace() in PHP — this function is used to perform a pattern match on

a string and then replace the match with the specified text.

Below is the syntax for a regular expression function such as PHP preg_match(),
PHP preg_split() or PHP preg_replace().

Wet Programming Lectures (PHP)

<?php
function_name('/pattern/',subject);
7>

HERE,

“function_name(...)” is either PHP preg match(), PHP preg split() or PHP
preg_replace().
“/.../” The forward slashes denote the beginning and end of our PHP regex

tester function
“‘/pattern/” is the pattern that we need to matched
“subject” is the text string to be matched against

Let’s now look at practical examples that implement the above PHP regex

functions.

Preg_match() in PHP
The first example uses the preg_match() in PHP function to perform a simple

pattern match for the word guru in a given URL.
The code below shows the implementation for preg_match() tester function for the
above example.

<?php

$my url = "www.guru99.com”; if

(preg_match("/guru/", $my url))

{
echo "the url $my _url contains guru™;
} else
{ echo "the url $my url does not contain
guru”;
¥

7>

Wet Programming Lectures (PHP)

Browse to the URL http://localhost/phptuts/preg_match_simple.php

i i
o |
(E localhost/phptuts/preg_rn =

= € | [} localhost/phptuts/preg_match_simple.php

Dt
n

the wrl www. guru99 com contains gurn

Let’s examine the part of the code responsible for our output “preg match(“/guru/’,

$my url)” HERE,

“preg_match(...)” is the PHP regex function
““‘/guru/™ is the regular expression pattern to be matched

“$my url” is the variable containing the text to be matched against.

PHP Preg_split()
Let’s now look at another example that uses the preg_split() in PHP function. We

will take a string phrase and explode it into an array; the pattern to be matched is

a single space.

The text string to be used in this example is “I Love Regular Expressions™. The
code below illustrates the implementation of the above example.

<?php

$my_text="1 Love Regular Expressions";

$my array = preg_split("/ /", $my_text);

print_r($my_array);

7>

Wet Programming Lectures (PHP)

Browse to the URL http://localhost/phptuts/preg_split.php

s

(E localhost/phptuts/preg_s; =

= € | [} localhost/phptuts/preg_splitphp o=

Array ([0] == I[1] == Love [2] => Regular [3] => Expressions)

PHP Preg_replace()

Let’s now look at the preg_replace() in PHP function that performs a pattern match
and then replaces the pattern with something else. The code below searches for the
word guru in a string.
It replaces the word guru with the word guru surrounded by css code that highlights
the background colour.
<?php
$text = "We at Guru99 strive to make quality education
affordable to the masses. Guru99.com"; $text =
preg_replace("/Guru/", 'Guru', $text);
echo $text;
7>

Assuming you have saved the file preg_replace.php, browser to the

Wet Programming Lectures (PHP)

URL http://localhost/phptuts/preg_replace.php

€« c

| BRSNS
[
f‘. E localhost/phptuts/preg_re =

|9 localhost/phptuts/preg_replace.php

We at Guru99 strive to make quality education affordable to the masses. Guru99 com

Regular Expression Metacharacters
The above examples used very basic patterns; metacharacters simply allow us to

<5

—
—
Lo | o

)

perform more complex pattern matches such as test the validity of an email address.

Let’s now look at the commonly used metacharacters.

Metacharacter Description Example
Matches any single character except| /./ matches anything that has a
a new line single character
A Matches the beginning of or string /| /*PH/ matches any string that
excludes characters starts with PH
$ Matches pattern at the end of the |/com$/ matches guru99.com,yah
string 00.com Etc.
* Matches any zero (0) or more /com*/ matches computer,
characters communication etc.
+ Requires preceding character(s) /yah+o0o/ matches yahoo
appear at least once
\ Used to escape meta characters |/yahoo+\.com/ treats the dot as a
literal value
[...] Character class /[abc]/ matches abc
a-z Matches lower case letters /a-z/ matches cool, happy etc.

Wet Programming Lectures (PHP)

Metacharacter Description Example
A-Z Matches upper case letters /A-Z/ matches WHAT, HOW,
WHY etc.
0-9 Matches any number between 0 and /0-4/ matches 0,1,2,3,4
9

The above list only gives the most commonly used metacharacters in regular
expressions.
Let’s now look at a fairly complex example that checks the validity of an email
address.

<?php

$my_email = "name@company.com";

if (preg_match("/*a-zA-Z0-9. -]+@[a-zA-Z0-9-]+\.[a-

zAZ.J{2,5}%/", $my_email)) { echo "$my_email is a valid

email address";

}else { echo "$my_email is NOT a valid email

address';

¥

7>

Explaining the pattern “[/[a-zA-Z0-9. -]+@[a-zA-Z0-9-]+\.[a-zA-Z.]{2,5}$/]”
HERE,

““/.../"” starts and ends the regular expression

“Na-zA-Z0-9._-]” matches any lower or upper case letters, numbers between
0 and 9 and dots, underscores or dashes.

“+(@[a-zA-Z0-9-]” matches the (@ symbol followed by lower or upper case
letters, numbers between 0 and 9 or dashes.

Wet Programming Lectures (PHP)

“+\.[a-zA-Z.]1{2,5}$/” escapes the dot using the backslash then matches any
lower or upper case letters with a character length between 2 and 5 at the end
of the string.

Browse to the URL http://localhost/phptuts/preg_match.php

s

(E localhost/phptuts/preg_rn x

= € | [} localhost/phptuts/preg_match.php

(=]]

Dt
n

name({Z company.com is a valid email address

As you can see from the above example breakdown, metacharacters are very

powerful when it comes to matching patterns.

Summary
A Regular Expression or Regex in PHP is a pattern match algorithm
Regular expressions are very useful when performing validation checks,
creating HTML template systems that recognize tags etc.
PHP has built in functions namely PHP preg_match(), PHP preg_split() and
PHP preg_replace() that support regular expressions.

Metacharacters allow us to create complex patterns

https://www.guru99.com/php-tutorials.html
https://www.guru99.com/php-tutorials.html

