
Web Programming Lectures (PHP)

5- PHP preg_match(): Regular Expressions (Regex)

What is Regular expression in PHP?

PHP Regular Expression also known as regex are powerful pattern matching

algorithm that can be performed in a single expression. Regular expressions use

arithmetic operators such as (+,-,^) to create complex expressions. They can help

you accomplish tasks such as validating email addresses, IP address etc.

Why use regular expressions

• PHP Regular expressions simplify identifying patterns in string data by

calling a single function. This saves us coding time.

• When validating user input such as email address, domain names, telephone

numbers, IP addresses,

• Highlighting keywords in search results

• When creating a custom HTML template. Regex in PHP can be used to

identify the template tags and replace them with actual data.

Built-in Regular expression Functions in PHP
PHP has built in functions that allow us to work with regular functions. The

commonly used regular expression functions in PHP.

• preg_match() in PHP – this function is used to perform pattern matching in

PHP on a string. It returns true if a match is found and false if a match is not

found.

• preg_split() in PHP – this function is used to perform a pattern match on a

string and then split the results into a numeric array

• preg_replace() in PHP – this function is used to perform a pattern match on

a string and then replace the match with the specified text.

Below is the syntax for a regular expression function such as PHP preg_match(),

PHP preg_split() or PHP preg_replace().

Web Programming Lectures (PHP)

<?php

function_name('/pattern/',subject);

?>

HERE,

• “function_name(…)” is either PHP preg_match(), PHP preg_split() or PHP

preg_replace().

• “/…/” The forward slashes denote the beginning and end of our PHP regex

tester function

• “‘/pattern/'” is the pattern that we need to matched

• “subject” is the text string to be matched against

Let’s now look at practical examples that implement the above PHP regex

functions.

Preg_match() in PHP

The first example uses the preg_match() in PHP function to perform a simple

pattern match for the word guru in a given URL.

The code below shows the implementation for preg_match() tester function for the

above example.

<?php

$my_url = "www.guru99.com"; if

(preg_match("/guru/", $my_url))

{

 echo "the url $my_url contains guru";

} else

{ echo "the url $my_url does not contain

guru";

}

?>

Web Programming Lectures (PHP)

Browse to the URL http://localhost/phptuts/preg_match_simple.php

Let’s examine the part of the code responsible for our output “preg_match(‘/guru/’,

$my_url)” HERE,

• “preg_match(…)” is the PHP regex function

• “‘/guru/'” is the regular expression pattern to be matched

• “$my_url” is the variable containing the text to be matched against.

PHP Preg_split()

Let’s now look at another example that uses the preg_split() in PHP function. We

will take a string phrase and explode it into an array; the pattern to be matched is

a single space.

The text string to be used in this example is “I Love Regular Expressions”. The

code below illustrates the implementation of the above example.

<?php

$my_text="I Love Regular Expressions";

$my_array = preg_split("/ /", $my_text);

print_r($my_array);

?>

Web Programming Lectures (PHP)

Browse to the URL http://localhost/phptuts/preg_split.php

PHP Preg_replace()

Let’s now look at the preg_replace() in PHP function that performs a pattern match

and then replaces the pattern with something else. The code below searches for the

word guru in a string.

It replaces the word guru with the word guru surrounded by css code that highlights

the background colour.

<?php

$text = "We at Guru99 strive to make quality education

affordable to the masses. Guru99.com"; $text =

preg_replace("/Guru/", '<span

style="background:yellow">Guru', $text);

echo $text;

?>

Assuming you have saved the file preg_replace.php, browser to the

Web Programming Lectures (PHP)

URL http://localhost/phptuts/preg_replace.php

Regular Expression Metacharacters

The above examples used very basic patterns; metacharacters simply allow us to

perform more complex pattern matches such as test the validity of an email address.

Let’s now look at the commonly used metacharacters.

Metacharacter Description Example

. Matches any single character except

a new line

 /./ matches anything that has a

single character

^ Matches the beginning of or string /

excludes characters

/^PH/ matches any string that

starts with PH

$ Matches pattern at the end of the

string

/com$/ matches guru99.com,yah

oo.com Etc.

* Matches any zero (0) or more

characters

/com*/ matches computer,

communication etc.

+ Requires preceding character(s)

appear at least once

/yah+oo/ matches yahoo

\ Used to escape meta characters /yahoo+\.com/ treats the dot as a

literal value

[…] Character class /[abc]/ matches abc

a-z Matches lower case letters /a-z/ matches cool, happy etc.

Web Programming Lectures (PHP)

Metacharacter Description Example

A-Z Matches upper case letters /A-Z/ matches WHAT, HOW,

WHY etc.

0-9 Matches any number between 0 and

9

/0-4/ matches 0,1,2,3,4

The above list only gives the most commonly used metacharacters in regular

expressions.

Let’s now look at a fairly complex example that checks the validity of an email

address.

<?php

$my_email = "name@company.com";

if (preg_match("/^[a-zA-Z0-9._-]+@[a-zA-Z0-9-]+\.[a-

zAZ.]{2,5}$/", $my_email)) { echo "$my_email is a valid

email address";

} else { echo "$my_email is NOT a valid email

address";

}

?>

Explaining the pattern “[/^[a-zA-Z0-9._-]+@[a-zA-Z0-9-]+\.[a-zA-Z.]{2,5}$/]”

HERE,

• “‘/…/'” starts and ends the regular expression

• “^[a-zA-Z0-9._-]” matches any lower or upper case letters, numbers between

0 and 9 and dots, underscores or dashes.

• “+@[a-zA-Z0-9-]” matches the @ symbol followed by lower or upper case

letters, numbers between 0 and 9 or dashes.

Web Programming Lectures (PHP)

• “+\.[a-zA-Z.]{2,5}$/” escapes the dot using the backslash then matches any

lower or upper case letters with a character length between 2 and 5 at the end

of the string.

Browse to the URL http://localhost/phptuts/preg_match.php

As you can see from the above example breakdown, metacharacters are very

powerful when it comes to matching patterns.

Summary

• A Regular Expression or Regex in PHP is a pattern match algorithm

• Regular expressions are very useful when performing validation checks,

creating HTML template systems that recognize tags etc.

• PHP has built in functions namely PHP preg_match(), PHP preg_split() and

PHP preg_replace() that support regular expressions.

• Metacharacters allow us to create complex patterns

https://www.guru99.com/php-tutorials.html
https://www.guru99.com/php-tutorials.html

