The G-S Algorithm

Step 0: Formulate and assemble $Y_{\text {bus }}$ in per unit
Step 1: Assign initial guesses to unknown voltage magnitudes and angles

$$
\left|\mathrm{V}_{1}\right|=1.0, \quad \delta=0.0
$$

Step 2a: For Load Buses, find using (17) V_{i}.
$V_{i}^{(m+1)}=\frac{1}{Y_{i i}}\left[\frac{P_{i}-j Q_{i}}{V_{i}^{(m) *}}-\sum_{\substack{\mathrm{k}=1 \\ \mathrm{k} \neq \mathrm{i}}}^{\mathrm{n}} \mathrm{Y}_{\mathrm{ik}} \cdot \mathrm{V}_{\mathrm{k}}^{\beta}-\sum_{\mathrm{k}=\mathrm{i}+1}^{\mathrm{n}} \mathrm{Y}_{\mathrm{ik}} \cdot \mathrm{V}_{\mathrm{k}}^{(\mathrm{m})}\right]$

$$
\beta=m \text { for } k>i, \mid \beta=m+1 \text { for } k<i
$$

where, $m=$ iteration number. For generator bus, find using (11) and (17) together. That is, find Qi first.

$$
Q_{i}^{(m+1)}=-\operatorname{Im} a g\left[V _ { i } ^ { * (m) } \left\{V_{i}^{(m)} Y_{i i}+\sum_{\substack{k=1 \\ k \neq i}}^{n} Y_{i k} V_{k}^{(m)}\right.\right.
$$

Then
$V_{i}^{(m+1)}=\frac{1}{Y_{i i}}\left[\frac{P_{i}-j Q_{i}}{V_{i}^{(m) *}}-\sum_{\substack{\mathrm{k}=1 \\ \mathrm{k} \neq \mathrm{i}}}^{\mathrm{n}} \mathrm{Y}_{\mathrm{ik}} \cdot V_{\mathrm{k}}^{\beta}-\sum_{\mathrm{k}=\mathrm{i}+1}^{\mathrm{n}} \mathrm{Y}_{\mathrm{ik}} \cdot \mathrm{V}_{\mathrm{k}}^{(\mathrm{m})}\right]$

However, V_{i} is specified for generator busses. So:
$V_{i}^{(m+1)}=\left|V_{i, s p e c}\right| \angle \delta_{i c a l c}^{(m+1)}$
So, for example, if there are five busses in the system being studied, and one has determined new values of bus voltages at busses $1-3$, then during the determination of bus voltage at bus 4 , one should use these newly calculated values of bus voltages at 1,2 , and 3 ; busses 4 and 5 will have the values from the previous iteration.

Step 2b: for faster convergence, apply acceleration factor to load buses
$V_{i, a c c}^{(m+1)}=V_{i, a c c}^{(m)}+\alpha\left(V_{i}^{(m)}-V_{i, a c c}^{(m)}\right)$
where $\alpha=$ acceleration factor.

Step 3: Check Convergence
$\left|\operatorname{Re}\left[V_{i}^{(m+1)}\right]-\right| \operatorname{Re}\left[V_{i}^{(m)}\right] \leq \varepsilon$
That is, the absolute value of the difference of the real part of the voltage between successive iterations should be less than a tolerance value ε. Typically, $\varepsilon \leq 10^{-4}$, and also,
$|\operatorname{Im} a g|\left[V_{i}^{(m+1)}\right]-\operatorname{Im} a g\left[V_{i}^{(m)}\right] \leq \varepsilon$

That is, the absolute value of the difference of the imaginary value of the voltage should be less than a tolerance value ε,

Figure : A two-bus system illustrating line-flow computation.

If the difference is greater than tolerance, return to Step 3. If the difference is less than tolerance, the solution has converged; go to Step 4.

Step 4: Find slack bus power Pg and Qg from equations (5) and (6).
Step 5: Find all line flows as described in the next section computing line flows. As the last step in any power-flow solution, one has to find the line flows. This is illustrated by the twobus system shown in above Fig. Line current, Iij, at bus i is defined positive in the direction i to j .

$$
I_{i k}=I_{s}+I_{p i}=\left(V_{i}-V_{k}\right) \cdot y_{s}+V_{i} \cdot y_{p i}
$$

Let $\mathrm{S}_{\mathrm{kj}}, \mathrm{S}_{\mathrm{jk}}$ be line powers defined positive into the line at bus i and j , respectively.

$$
\begin{equation*}
S_{i k}=P_{i k}+j Q_{i k}=V_{i} I_{i k}^{*}=V_{i}\left(V_{i}^{*}-V_{k}^{*}\right) \cdot y_{s}^{*}+\left|V_{i}\right|^{2} \cdot y_{p i}^{*} \tag{a-1}
\end{equation*}
$$

$$
\begin{equation*}
S_{i k}=P_{i k}+j Q_{i k}=V_{i} I_{i k}^{*}=V_{i}\left(V_{i}^{*}-V_{j}^{*}\right) \cdot y_{s}^{*}+\left|V_{i}\right|^{2} \cdot y_{p i}^{*} \tag{a-2}
\end{equation*}
$$

The power loss in line $(i-j)$ is the algebraic sum of the power flows determined from (a-1) and (a-2).
$S_{L i j}=S_{i j}+S_{j i}$

Flowchart for Gauss-Sediel iterative method for load flow solution

