1-4 The equal -Area stability criterion:

$$
\begin{aligned}
& \frac{H}{\pi f} \frac{d^{2} \delta}{d t^{2}}=P_{T}-P_{g}=P_{a} \\
& P_{g}=\frac{\left|E^{\prime} \| V\right|}{X_{d}^{\prime}+X_{e}} \sin \delta \\
& 2 \times \frac{d^{2} \delta}{d t^{2}} \times \frac{d \delta}{d t}=\frac{2 \pi f}{H} P_{a} \times \frac{d \delta}{d t}
\end{aligned}
$$

$\underline{\mathrm{Or}}$

$$
\frac{d}{d t}\left(\frac{d \delta}{d t}\right)^{2}=\frac{2 \pi f}{H} P_{a} \times \frac{d \delta}{d t}
$$

$$
\left(\frac{d \delta}{d t}\right)^{2}=\frac{2 \pi f}{H} \int_{\delta_{0}}^{\delta_{2}} P_{a} d \delta
$$

$$
\frac{d \delta}{d t}=\omega=\sqrt{\frac{2 \pi f^{\prime}}{H} \int_{\delta_{0}}^{\delta_{2}} P_{a} d \delta}
$$

- Before disturbance, machine is operated with synchronous speed , therefore , $\frac{d \delta}{d t}=0$
- Also , if the system has transient stability, the machine will again operate at synchronous speed after the disturbance i.e. $\frac{d \delta}{d t}=0$
- Therefore, if the system has transient stability it fulfils the condition :

$$
\sqrt{\frac{2 \pi f}{H} \int_{\delta_{0}}^{\delta_{2}} P_{a} d \delta}=0=\int_{\delta_{0}}^{\delta_{2}} P_{a} d \delta
$$

This mean, total area under the $P-\delta$ curve between the limits δ_{0} and δ_{2} should be zero .

$A_{1 \text { - acceleration area, }} A_{2 \text { - deceleration area }}$

The above criterion is known as the equal area criterion because the two shaded areas are equal in magnitude and opposite in sign. In other words, the above equation is the algebraic sum of the two area A_{1} and A_{2}, and therefore their sum should be zero .

$$
\begin{aligned}
& \int_{\delta_{0}}^{\delta_{1}}\left(P_{T}-P_{g}\right) d \delta+\int_{\delta 1}^{\delta_{2}}\left(P_{T}-P_{g}\right) d \delta=0 \\
& \int_{\delta_{0}}^{\delta_{1}}\left(P_{T}-P_{g}\right) d \delta-\int_{\delta 1}^{\delta_{2}}\left(P_{g}-P_{T}\right) d \delta=0
\end{aligned}
$$

$$
\begin{aligned}
& \int_{\delta_{0}}^{\delta_{1}}\left(P_{T}-P_{g}\right) d \delta=\int_{\delta 1}^{\delta_{2}}\left(P_{g}-P_{T}\right) d \delta \\
& \therefore \quad A_{1}=A_{2}
\end{aligned}
$$

Application of equal area criterion for few examples of fault disturbances :

1- ONE of double lines suddenly switched off :

Line No. 2 suddenly switched off by opening $C B_{3}$ or $C B_{4}$

$A_{1 \text { - acceleration area }}$
A_{2} - deceleration area
Before fault:

$$
P_{g}^{I}=\frac{|E \| V|}{X^{I}} \sin \delta=P_{\max }^{I} \sin \delta
$$

X^{I} - transfer reactance before switching off line No. 2.

After fault:

$$
P_{g}^{I I}=\frac{|E||V|}{X^{I I}} \sin \delta=P_{\max }^{I I} \sin \delta
$$

$X^{I I}$-transfer reactance after the line N 0.2 is switched off .

2- System fault and line switching:

Fault (L-G)
a) Fault occurrence.
b) Fault clearing by the CB.

The time interval between these conditions is determined by the delay setting of the protection equipment. Therefore, three $P-\delta$ curves are required representing:
i) pre fault condition
ii) fault condition .
iii) post fault condition .
δ_{1} - clearing angle
depend on clearing
time t_{1}

The curves in above figure are drawn from the following equations
i) for pre fault condition :

$$
P_{g}^{I}=\frac{|E \| V|}{X^{I}} \sin \delta=P_{\max }^{I} \sin \delta
$$

ii) For fault condition :

$$
P_{g}^{I I}=\frac{|E||V|}{X^{I I}} \sin \delta=P_{\max }^{I I} \sin \delta
$$

iii) For post fault :

$$
P_{g}^{I I I}=\frac{|E \| V|}{X^{I I I}} \sin \delta=P_{\max }^{I I I} \sin \delta
$$

Where :
$X^{I}, X^{I I}, X^{I I I}$ - are the transfer reactance corresponding the above three conditions.

Critical clearing angle (δ_{C})

From below figure:
$A_{1}=\int_{\delta_{0}}^{\delta_{\delta}}\left(P_{T}^{0}-P_{\max }^{I I} \sin \delta\right) d \delta$

$$
P_{T}^{0}=P_{\max }^{I} \sin \delta
$$

The angle :

$$
\delta_{0}^{\prime}=\sin ^{-1}\left(\frac{P_{T}^{0}}{P_{\max }^{I I I}}\right)
$$

And, $\delta_{2}=\delta_{m}=\pi-\delta_{0}^{\prime}$

$$
=\pi-\sin ^{-1}\left(\frac{P_{T}^{0}}{P_{\max }^{I I I}}\right)
$$

If, $A_{1}=A_{2}$

$$
\int_{\delta_{0}}^{\delta_{c}}\left(P_{T}^{0}-P_{\max }^{I I} \sin \delta\right) d \delta=\int_{\delta_{c}}^{\delta_{m}}\left(P_{\max }^{I I I} \sin \delta-P_{T}^{0}\right) d \delta
$$

$$
\left|P_{T}^{0} \delta+P_{\max }^{I I} \cos \delta\right|_{\delta_{0}}^{\delta_{c}}=\left|-P_{\max }^{I I I} \cos \delta-P_{T}^{0} \delta\right|_{\delta_{c}}^{\delta_{m}}
$$

$$
P_{T}^{0}\left(\delta_{c}-\delta_{0}\right)+P_{\max }^{I I}\left(\cos \delta_{c}-\cos \delta_{0}\right)=
$$

$$
-P_{\max }^{I I I}\left(\cos \delta_{m}-\cos \delta_{c}\right)-P_{T}^{0}\left(\delta_{m}-\delta_{c}\right)
$$

$$
\begin{equation*}
\cos \delta_{c}=\frac{P_{T}^{0}\left(\delta_{m}-\delta_{0}\right)-P_{\max }^{I I} \cos \delta_{0}+P_{\max }^{I I I} \cos \delta_{m}}{P_{\max }^{I I I}-P_{\max }^{I I}} \tag{3}
\end{equation*}
$$

The time (t) corresponding to a given value of the angle $(\boldsymbol{\delta})$ is :

$$
t=\sqrt{\frac{2 M\left(\delta-\delta_{0}\right)}{P^{0}}}
$$

The maximum time clearing when a short circuit can still be cleared :

$$
t_{\text {clear }}=\sqrt{\frac{M\left(\delta_{c}-\delta_{0}^{I}\right)}{P_{\max }^{I I}\left(\sin \delta_{c}-\sin \delta_{0}^{I}\right)}} \times \cos ^{-1}\left(\frac{\frac{P_{0}}{P_{\max }^{I I}}-\sin \delta_{c}}{\frac{P_{0}}{P_{\max }^{I I I}}-\sin \delta_{0}}\right)
$$

