

Example (1): For the circuit shown in fig. below , it is assumed that both lines are first open and then re-closed , determine the maximum time (t_{ON}) (time of re-closed) during which the system is capable of preserving its transient stability when energy is not supplied to it .

$$P_T^0 = P_g^0 = 0.584$$

$$X_{EV} = 1.15$$
; $M = 7Sec$.

Solution:

$$P_{\text{max}}^{I} = P_{\text{max}}^{III} = \frac{|E'||V|}{X_{EV}} = \frac{1.55 \times 1}{1.15} = 1.35 \ pu$$

When both lines are switched off $P_{\text{max}}^{II} = 0$

 $\delta_c(\delta_{\mathit{ON}})$ - is the max. angle at which the lines should be switched ON (re-closed) .

$$\mathcal{S}_0 \mathcal{S}_c \mathcal{S}_{m \ 180}$$

$$P_g^{II} = 0^{----}$$

$$\cos \delta_c = \frac{P_g^0(\delta_m - \delta_0) - P_{\text{max}}^{II} \cos \delta_0 + P_{\text{max}}^{III} \cos \delta_m}{P_{\text{max}}^{III} - P_{\text{max}}^{II}}$$

$$\delta_{m} = 180^{\circ} - \delta_{0} = 180^{\circ} - \sin^{-1} \frac{P_{g}^{0}}{P_{\text{max}}^{I}}$$
$$= 180^{\circ} - \sin^{-1} \frac{0.584}{1.35} = 154.4^{\circ}$$

$$\cos \delta_c = \frac{0.584(154.6^{\circ} - 25.6^{\circ}) \frac{\pi}{180} - 0 + 1.35 \cos 154.6^{\circ}}{1.35 - 0} = 0.0665$$

$$\delta_c = \cos^{-1} 0.0665 = 86.2^{\circ}$$

$$t_{ON} = \sqrt{\frac{2M(\delta_{ON} - \delta_0)}{P^0}} = \sqrt{\frac{2\frac{7}{2\pi f_0}(86.2 - 25.6)\frac{\pi}{180}}{0.584}}$$

$$= \sqrt{\frac{7(86.2 - 25.6)}{0.584 \times 180 \times 50}} = 0.284 \text{ Sec.}$$

Example (2):

For the circuit shown in fig., if the fault occurs on one line.

Determine the critical clearing angle.

$$P_{\text{max}}^{I} = 2.0$$
 ; $P_{\text{max}}^{II} = 0.5$; $P_{\text{max}}^{III} = 1.5$

Solution:

From data we can draw the ($P-\delta$) curve .

$$P_g^0 = P_{\text{max}}^I \sin \delta_0$$

$$\sin \delta_0 = \frac{P_g^0}{P_{\text{max}}^I} = \frac{1}{2}$$

$$\delta_0 = \sin^{-1} 0.5 = 30^\circ \quad elec.$$

$$\delta_m = 180^\circ - \sin^{-1} \frac{P_g^0}{P_{\text{max}}^{III}}$$
$$= 180^\circ - \sin^{-1} \frac{1}{1.5} = 138.2^\circ$$

$$\cos \delta_c = \frac{1 \times (138.2^{\circ} - 30^{\circ}) \frac{\pi}{180} - 0.5 \cos 30^{\circ} + 1.5 \cos 138.2^{\circ}}{1.5 - 0.5} = 0.337$$

$$\delta_c = \cos^{-1} 0.337 = 70.3^{\circ}$$
 elect.

Example (3):

For the circuit shown in fig., find the critical fault clearing angle, when 3-phase sho circuit occurs at point shown in fig. The breakers CB_3 and CB_4 are opened after the fault.

$$P_T^0 = P_g^0 = 1.0$$

$$X_d = j0.25$$
; $X_T = j0.06$; $X_{L1} = X_{L2} = 0.5$;

i) pre fault operation:

$$X^{I} = 0.25 + \frac{0.5 \times 0.5}{0.5 + 0.5} + 0.06 = 0.56$$

$$P_{\text{max}}^{I} = \frac{1.25 \times 1}{0.56} = 2.232$$

ii) during fault:

0.25 0.5//0.5=0.25 0.06
$$Z_1 = 0.5$$
 $Z_2 = 0.06$

F

$$Z_3 = 0$$

$$X^{II} = Z_1 + Z_2 + \frac{Z_1 Z_2}{Z_3}$$

$$X^{II} = j0.5 + j0.06 + \frac{j0.5 \times j0.06}{j0.0} = \infty$$

That is mean, no transfer power at the receiving end.

$$P_{\rm max}^{II} = 0$$

iii) post fault operation (CB_3 and CB_4 are opened)

$$X^{III} = 0.25 + 0.5 + 0.06 = 0.81$$

$$P_{\text{max}}^{III} = \frac{1.25 \times 1}{0.81} = 1.543$$

$$P_g^0 = P_{\text{max}}^I \sin \delta_0$$

$$\sin \delta_0 = \frac{1}{2.232} = 0.448$$
 ; $\delta_0 = \sin^{-1} 0.448 = 26.6^\circ$

$$\delta_m = 180 - \sin^{-1} \frac{P_g^0}{P_{\text{max}}^{III}} = 180 - \sin \frac{1}{1.54} = 139.6^{\circ}$$

$$\cos \delta_c = \frac{1 \times (139.6 - 26.6) \frac{\pi}{180} - 0 + 1.543 \cos 139.6}{1.543 - 0} = 0.516$$

$$\delta_c = \cos^{-1} 0.516 = 58.9^\circ$$