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From Fourier transform theory we know that periodicity in the time domain is traps.
formed into uniform sampling in the frequency domain. This interplay between the time
and frequency domains is borne out by the power spectral density of the maximal-lengy,
wave c(f). Specifically, taking the Fourier transform of Equation {7.5), we get the sampled
specttum

1 1+N <«
SAP) = 5z 0N + o S siné(ﬁ) S(f - N"T) 7.6

n#0

which is plotted in Figure 7.3c form =3 or N = 7.

Comparing the results of Figure 7.3 for a maximal-length sequence with the corre.
sponding results shown in Figure 1.11 for a random binary sequence, we may make the
following observations:

» For a period of the maximal-length sequence, the autocorrelation function R (7} is
somewhat similar to that of a random binary wave.

+ The waveforms of both sequences have the same envelope, sinc*(fT), for their power
spectral densities. The fundamental difference between them is that whereas the ran-
dom binary sequence has a continuous spectral density characteristic, the correspond-
ing characteristic of a maximal-length sequence consists of delta functions spaced
1/NT, Hz apart.

As the shift-register length 72, or equivalently, the period N of the maximal-length sequence
is increased, the maximal-length sequence becomes increasingly similar to the random
binary sequence. Indeed, in the limit, the two sequences become identical when N is made
infinitely large. However, the price paid for making N large is an increasing storage require-
ment, which imposes a practical limit on how large N can actually be made.

CHOOSING A MAXIMAL-LENGTH SEQUENCE

Now that we understand the properties of a maximal-length sequence and the fact that
we can generate it using a linear feedback shift register, the key question that we need to
address is: How do we find the feedback logic for a desired petiod N? The answer to this

fi TaBLE 7.1 Maximal-length sequences of shift-register lengths 2—8

Shift-Register
Length, m Feedback Taps

2% [2,1]

3* (3,1]

4 [4, 1]

5* [5,2),[5, 4, 3,21, [5,4,2,1]

6 (6, 11,16, 5,2, 1], [6, 5, 3, 2]

7" 7, 1,17, 31,17, 3, 2. 11, (7, 4, 3,21, 17, 6,4, 21, 7, 6, 3, 1}, [7, 6, 5, 2],
[7,6,5,4,2,1},17,5,4,3,2, 1]

8 (8,4, 3,21, [8,6, 5,31, [8,6,5,2],(8,5,3,11,[8,6,5, 1], 8,7, 6, 1],
[8,7,6,5,2,1],[8,6,4,3,2,1]
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question is to be found in the theory of error-control codes, which is covered in Chapter
10. The task of finding the required feedback logic is made particularly easy for us by
virtue of the extensive tables of the necessary feedback connections for varying shift-
register lengths that have been compiled in the literature. In Table 7.1, we present the sets
of maximal (feedback) taps pertaining to shift-register lengths 72 = 2, 3, ..., 8.> Note
that as'» increases, the number of alternative schemes {codes) is enlarged. Also, for every
set of feedback connections shown in this table, there is an “image” set that generates an
identical maximal-length code, reversed in time sequence.

The particular sets identified with an asterisk in Table 7.1 correspond to Mersenne
prime length sequences, for which the period N is a prime number.

B EXAMPLE 7.2

Consider a maximal-length sequence requiring the use of a linear feedback-shift register of
length 7 = 5. For feedback taps, we select the set [S, 2] from Table 7.1. The corresponding
configuration of the code generator is shown in Figure 7.44. Assuming that the initial state is
10000, the evolution of one period of the maximal-length sequence generated by this scheme
is shown in Table 7.2a, where we see that the generator returns to the initial 10000 after 31
iterations; that is, the period is 31, which agrees with the value obtained from Equation (7.2).
Suppose next we select another set of feedback taps from Table 7.1, namely, [5, 4, 2, 1.
The corresponding code generator is thus as shown in Figure 7.4b. For the initial state 10000,
we now find that the evolution of the maximal-length sequence is as shown in Table 7.25.
Here again, the generator returns to the initial state 10000 after 31 iterations, and so it should.
But the maximal-length sequence generated is different from that shown in Table 7.2a.
Clearly, the code generator of Figure 7.4 has an advantage over that of Figure 7.4b,
as it requires fewer feedback connections. |
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FIGURE 7.4 Two different configurations of feedback shift register of length m = 5. (4) Feed-
back connections |5, 2]. (b) Feedback connections [5, 4, 2, 1].
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i 7.3 A Notion of Spread Spectrum

An important attribute of spread-spectrum modulation is that it can provide protectiop
against externally generated interfering {jamming) signals with finite power. The jamming
signal may consist of a fairly powerful broadband noise or multitone waveform that js
directed at the receiver for the purpose of disrupting communications. Protection againgt
jamming waveforms is provided by purposely making the information-bearing signal oc.
cupy a bandwidth far in excess of the minimum bandwidth necessary to transmit it. This
has the effect of making the transmitted signal assume a noiselike appearance so as to
blend into the background. The transmitted signal is thus enabled to propagate through
the channel undetected by anyone who may be listening. We may therefore think of spread
spectrum as a method of “camouflaging” the information-bearing signal.

One method of widening the bandwidth of an information-bearing (data) sequence
involves the use of modulation. Let {b) denote a binary data sequence, and {c;} denote a
pseudo-noise (PN) sequence. Let the waveforms b(t) and ¢(t) denote their respective polar
nonreturn-to-zero representations in terms of two levels equal in amplitude and opposite
in polarity, namely, +1. We will refer to b(t) as the information-bearing (data) signal, and
to c(t) as the PN signal. The desired modulation is achieved by applying the data signal
bi#) and the PN signal c(t) to a product modulator or multiplier, as in Figure 7.5a. We
know from Fourier transform theory that multiplication of two signals produces a signal
whose spectrum equals the convolution of the spectra of the two component signals. Thus,
if the message signal b(¢) is narrowband and the PN signal ¢(2) is wideband, the product
(modulated) signal m(t) will have a spectrum that is nearly the same as the wideband PN
signal. In other words, in the context of our present application, the PN sequence performs
the role of a spreading code.

By multiplying the information-bearing signal b(t) by the PN signal c(t), each infor-
mation bit is “chopped” up into a number of small time increments, as illustrated in the
waveforms of Figure 7.6. These small time increments are commonly referred to as chips..

For baseband transmission, the product signal m(t) represents the transmitied signal.
We may thus express the transmitted signal as

mlt) = c(t)b(t) (7.7)

261 m{t} ()
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FiGueE 7.5 Idealized model of baseband spread-spectrum system. () Transmitter. (b) Channel:
(c) Receiver.



7.3 A Notion of Spread Spectrum 489

+1

1k

Ty |

{a) Data signal &(z)

oL | .
4 || |
=

() Spreading code c(z)

+(1) - —-| ,
A L

(c) Product signal m(r)

FIGURE 7.6 lllustrating the waveforms in the transmitter of Figure 7.5a.

The received signal 7(t} consists of the transmitted signal 7(t) plus an additive interference
denoted by i(#), as shown in the channel model of Figure 7.5b. Hence,

r(t) = m(t) + i)

= c(t)b(t) + i(t) (7.8)

To recover the original message signal b(t), the received signal r(z) is applied to a
demodulator that consists of a multiplier followed by an integrator, and a decision device,
as in Figure 7.5¢. The multiplier is supplied with a locally generated PN sequence that is
an exact replica of that used in the transmitter. Moreover, we assume that the receiver
operates in perfect synchronism with the transmitter, which means that the PN sequence
in the receiver is lined up exactly with that in the transmitter. The multiplier output in the
receiver is therefore given by

z(z) = c(t)r(t)

= A)b(t) + c(t)i(t) 79

Equation (7.9) shows that the data signal b(z) is multiplied twice by the PN signal c(z),
whereas the unwanted signal i(¢) is multiplied only once. The PN signal ¢(¢) alternates
between the levels —1 and +1, and the alternation is destroyed when it is squared; hence,

‘ ) =1 forallt (7.10)
Accordingly, we may simplify Equation (7.9) as
z(2) = b(t) + c()ilr) (7.11)





