3-2 Analysis Of A Power System In Per Unit: Steps:

1) Convert all three phase bus load MW and MVAR, generator MW and MVAR, to three phase per unit quantities using the 3 phase system base.
2) Convert all actual resistance, inductive and capacitive reactance values to per unit using the Zbase for each particular part of the power system where each r, x etc. is located.
3) Carry out all calculations in per unit, solving for the per unit bus voltage magnitudes and bus phase angles, line currents, and transmission losses.
4) Convert from per unit back to actual MW, MVAR, MVA, and KV.

Example 1: Prove that the pu equivalent impedance of a two winding transformer is the same whether referred to the H.T side or L.T side.

Solution:

$$
Z_{L \Omega}=Z_{H \Omega}\left(\frac{K V_{L}}{K V_{H}}\right)^{2}
$$

$Z_{L(\mathrm{pu})}=Z_{L \Omega} \frac{M V A}{\left(K V_{L}\right)^{2}}$
$Z_{L(\mathrm{pu})}=Z_{H \Omega}\left(\frac{K V_{L}}{K V_{H}}\right)^{2} \frac{M V A}{\left(K V_{L}\right)^{2}}$
$Z_{L(\mathrm{pu})}=Z_{H \Omega} \frac{M V A}{\left(K V_{H}\right)^{2}}$
$\therefore Z_{L(\mathrm{pu})}=Z_{H(\mathrm{pu})}$

Example 2:

A one-line diagram of a three-phase power system is shown. Draw the impedance diagram of the power system, and mark all impedances in per unit. Use a base of 100 MVA and 138 kV for the transmission lines. All transformers are connected to step up the voltage of the generators to the transmission line voltages. Calculate the terminal voltage of G_{2} (in pu) if G_{1} is out of service and the motor draws 50 MW of power with 1 pu voltage at its terminals.
Equipment Ratings:

item	MVA	kV	X_{pu}	item	MVA	kV	
G_{1}	45	13.2	0.15	T_{3}	70	138/11.6	0.10
G_{2}	55	18	0.12	Line 1	$\mathrm{Z}_{\mathrm{TL}}=\mathrm{j} 40 \Omega$		
Motor	75	11.6	0.23	Line 2	$\mathrm{Z}_{\mathrm{TL}}=\mathrm{j} 20 \Omega$		
T_{1}	50	13.8 / 138	0.10	Line 3	$\mathrm{Z}_{\mathrm{TL}}=\mathrm{j} 15 \Omega$		
T_{2}	60	19.05 / 138	0.10				

Voltage zones:
Zone 1: $\quad V_{b}=13.8 \mathrm{Kv}, \quad S_{b}=100 \mathrm{MVA}$
Zone 2: $\quad V_{b}=19.05 \mathrm{Kv}, \quad S_{b}=100 \mathrm{MVA}$
Zone 3: $\quad V_{b}=11.6 \mathrm{Kv}, \quad S_{b}=100 \mathrm{MVA}$
Zone 4: $\quad V_{b}=138 \mathrm{Kv}, \quad S_{b}=100 \mathrm{MVA}$
Impedance:
$Z_{G 1}=j 0.15\left(\frac{100 M V A}{45 M V A}\right)\left(\frac{13.2 K V}{13.8 K V}\right)^{2}=j 0.305 \mathrm{pu}$
$Z_{G 2}=j 0.12\left(\frac{100 M V A}{55 M V A}\right)\left(\frac{18 K V}{19.05 K V}\right)^{2}=j 0.195 p u$
$Z_{M}=j 0.23\left(\frac{100 M V A}{75 M V A}\right)\left(\frac{11.6 K V}{11.6 K V}\right)^{2}=j 0.307 p u$
$Z_{T 1}=j 0.1\left(\frac{100 M V A}{50 M V A}\right)\left(\frac{138 K V}{138 K V}\right)^{2}=j 0.2 p u$
$Z_{T 2}=j 0.1\left(\frac{100 M V A}{60 M V A}\right)\left(\frac{138 K V}{138 K V}\right)^{2}=j 0.167 p u$

University of Anbar
College of Engineering
Dept. of Electrical Engineering

$$
\begin{aligned}
& Z_{T 3}=j 0.1\left(\frac{100 M V A}{70 M V A}\right)\left(\frac{138 K V}{138 K V}\right)^{2}=j 0.143 \mathrm{pu} \\
& Z_{b}=\frac{(138 K V)^{2}}{100 M V A}=190.4 \Omega \\
& Z_{T L 1}=\frac{j 40 \Omega}{190.4 \Omega}=j 0.21 p u \\
& Z_{T L 2}=\frac{j 20 \Omega}{190.4 \Omega}=j 0.105 p u \\
& Z_{T L 3}=\frac{j 15 \Omega}{190.4 \Omega}=j 0.0788 \mathrm{pu}
\end{aligned}
$$

$Z_{L}=\frac{j 0.315 \cdot j 0.0788}{j 0.315+j 0.0788}=j 0.063$
$Z_{A B}=j 0.063+j 0.167+j 0.143=j 0.373$
$V_{A B}=I_{M} \cdot Z_{A B}=0.5 \cdot j 0.373=0.187 \angle 90$
$V_{G 2}=V_{A B}+V_{m}=1+0.187 \angle 90=1.017 \angle 10.6$

Ex mple 3: The three-phase power and line-line ratings of the electric power system shown in Figu are given below.

60 MVA
50 MVA
50 MVA
43.2 MVA
20 kV
$20 / 200 \mathrm{kV}$
$200 / 20 \mathrm{kV}$
18 kV
200 kV

$$
\begin{aligned}
& X=9 \% \\
& X=10 \% \\
& X=10 \% \\
& X=8 \%
\end{aligned}
$$

$$
Z=120+j 200 \Omega
$$

w an impedance diagram showing all impedances in per unit on a 100-MVAbase. Choose 20 ky voltage base for generator.
tion:
base voltage $V_{B G 1}$ on the LV side of T_{1} is 20 kV . Hence the base on its HV side is:
$V_{B 1}=20\left(\frac{200}{20}\right)=200 \mathrm{KV}$
fixes the base on the HV side of T_{2} at $V_{B 2}=200 \mathrm{kV}$, and on its LV side at
$V_{B m}=200\left(\frac{20}{200}\right)=20 \mathrm{KV}$
generator and transformer reactances in per unit on a 100 MVA base,
$G: \quad X=0.09\left(\frac{100}{60}\right)=0.15 p u$
$T_{1}: \quad X=0.1\left(\frac{100}{50}\right)=0.2 p u$
$T_{2}: \quad X=0.1\left(\frac{100}{50}\right)=0.2 p u$
$M: \quad X=0.08\left(\frac{100}{43.2}\right)\left(\frac{18}{20}\right)^{2}=0.15 p u$
base impedance for the transmission line is
$Z_{B L}=\frac{(200)^{2}}{100}=400 \Omega$
per unit line impedance is
line: $\quad Z_{\text {line }}=\left(\frac{120+j 200}{400}\right)=0.3+j 0.5 p u$
per unit equivalent circuit is shown in Figure
tion:
base voltage $V_{B G 1}$ on the LV side of T_{1} is 20 kV . Hence the base on its HV side is:
$V_{B 1}=20\left(\frac{200}{20}\right)=200 \mathrm{KV}$
Th
mple 4: Draw an impedance diagram for the electric power system shown in Figure showing all edances in per unit on a 100-MVA base. Choose 20 kV as the voltage base for generator. The th e power and line-line ratings are given below

90 MVA	20 kV	$X=9 \%$
80 MVA	$20 / 200 \mathrm{kV}$	$X=16 \%$
80 MVA	$200 / 20 \mathrm{kV}$	$X=20 \%$
90 MVA	18 kV	$X=9 \%$
m:	$200 \mathrm{kV} \mathrm{X}=120 \Omega$	
d:	200 kv	$\mathrm{Z}=300+j 400 \Omega$

fixes the base on the HV side of T_{2} at $V_{B 2}=200 \mathrm{kV}$, and on its LV side at
$V_{B G 2}=200\left(\frac{20}{200}\right)=20 \mathrm{KV}$
generator and transformer reactance in per unit on a 100 MVA base,
$G_{1}: \quad X=0.09\left(\frac{100}{90}\right)=0.1 p u$
$T_{1}: \quad X=0.16\left(\frac{100}{80}\right)=0.2 p u$
$T_{2}: \quad X=0.2\left(\frac{100}{80}\right)=0.25 p u$
$G_{2}: \quad X=0.09\left(\frac{100}{90}\right)\left(\frac{18}{20}\right)^{2}=0.081 \mathrm{pu}$
Th
base impedance for the transmission line is
$Z_{B L}=\frac{(200)^{2}}{100}=400 \Omega$
per unit line impedance is
line: $\quad Z_{\text {line }}=\left(\frac{300+j 400}{400}\right)=0.75+j 1 p u$
per unit equivalent circuit is shown in Figure
mple 5: Draw an impedance diagram for the electric power system shown in Figureshowing all edances in per unit on a 30MVA base. Choose 6.9 kV as thevoltage base for generator. The thre e power and line-line ratings are givenbelow

20 MVA	6.9 kV	$X=15 \%$
10 MVA	6.9 kV	$X=15 \%$
30 MVA	13.8 kV	$X=15 \%$
25 MVA	$6.9 / 115 \mathrm{kV}$	$X=10 \%$
12.5 MVA	$6.9 / 115 \mathrm{kV}$	$X=10 \%$
0 MVA	$7.5 / 75 \mathrm{kV}$	$X=10 \%$

So Ltion:
$G_{1}: \quad X=0.15\left(\frac{6.9}{6.9}\right)^{2}\left(\frac{30}{20}\right)=0.225 p u$
Bas voltage in $L_{1-2}=6.9\left(\frac{115}{6.9}\right)=115 \mathrm{KV}$
Bas impedance $=\frac{(115)^{2}}{30}=440 \Omega$
$\mathrm{L}_{1-2} \mathrm{~K}=\frac{100}{440}=0.2268 p u$
$=\frac{80}{440}=0.1814 p u$
$T_{1}: \quad X=0.1\left(\frac{6.9}{6.9}\right)^{2}\left(\frac{30}{25}\right)=0.12 p u$
Bas KV in $\mathrm{G}_{2}=115\left(\frac{6.9}{115}\right)=6.9 \mathrm{KV}$
$G_{2}: \quad X=0.15\left(\frac{30}{10}\right)\left(\frac{6.9}{6.9}\right)^{2}=0.45 p u$
$T_{2}: \quad X=0.1\left(\frac{30}{12.5}\right)\left(\frac{115}{115}\right)^{2}=0.25 \mathrm{pu}$
Ba voltage $=115\left(\frac{7.5}{75}\right)=11.5 \mathrm{KV}$
$G_{3}: \quad X=0.15\left(\frac{13.8}{11.5}\right)^{2}\left(\frac{30}{30}\right)=0.216 p u$
$T_{3}: \quad X=0.1\left(\frac{30}{10}\right)\left(\frac{75}{115}\right)^{2}=0.127 p u$

HW.

/ A $100 \mathrm{MVA}, 13.8 \mathrm{KV}, 3$-phase generator has a reactance of 20%. The generator is connected 3-phase transformer T I rated 100 MVA 12.5 KV 1110 KV with 10% reactance. The h.v. side the transformer is connected to a transmission line of reactance 100 ohm . The far end of the e is connected to a step down transformer T 2' made of three single-phase transformers each
ra ed $30 \mathrm{MVA}, 60 \mathrm{KV} / 10 \mathrm{KV}$ with 10% reactance the generator supplies two motors connected the l.v. side T2 as shown in Fig. E.6.2. The motors are rated at 25 MVA and 50 MVA both at KV with 15% reactance. Draw the reactance diagram showing all the values in per unit. Take herator rating as base.

2/ Figure below shows single-line diagram of a power system. The ratings of the generators dd transformers are given below:

G1: $\quad 25 \mathrm{MVA}, 6.6 \mathrm{kV}, x_{\mathrm{g} 1}=0.20 \mathrm{pu}$
$G 2: \quad 15 \mathrm{MVA}, 6.6 \mathrm{kV}, x_{\mathrm{g} 2}=0.15 \mathrm{pu}$
G3: $\quad 30 \mathrm{MVA}, 13.2 \mathrm{kV}, x_{\mathrm{g} 3}=0.15 \mathrm{pu}$
$T_{1}: \quad 30 \mathrm{MVA}, 6.6 \mathrm{fl}-115 \mathrm{YkV}, x \mathrm{~T} 1=0.10 \mathrm{pu}$
$T_{2}: \quad 15 \mathrm{MVA}, 6.6 \mathrm{fl}-115 \mathrm{Y} \mathrm{kV}, x \mathrm{~T} 2=0.10 \mathrm{pu}$
T3 : \quad Single-phase unit each rated 10 MVA, $6.9 / 69 \mathrm{kV}, x \mathrm{~T} 3=0.10 \mathrm{pu}$.
Draw per-unit circuit diagram using base values of 30 MVA and 6.6 kV in the circuit of generator-1.

Q3: A $100 \mathrm{MVA}, 33 \mathrm{kV}$, three phase generator has a reactance of 15%. The generator is connected to the motors through a transmission line and transformers as shown in Fig. below. Motors have rated inputs of $40 \mathrm{MVA}, 30 \mathrm{MVA}$ and 20 MVA at 30 kV with 20% reactance-each. Draw the per-unit circuit diagram.

Example: Draw the per-unit impedance diagram of the system shown in Fig. Assumed base

G1 $\quad 50 \mathrm{MVA}, 12.2 \mathrm{kV}, \mathrm{xg} 1=0.10 \mathrm{pu}$
G2 $20 \mathrm{MVA}, 13.8 \mathrm{kV}, \mathrm{xg} 2=0.10 \mathrm{pu}$
T_{1} $80 \mathrm{MVA}, 12.2 / 132 \mathrm{kV}, \mathrm{xT} 1=0.10 \mathrm{pu}$
$\mathrm{T}_{2} \quad 40 \mathrm{MVA}, 13.8 / 132 \mathrm{kV}, \mathrm{xT} 2=0.10 \mathrm{pu}$
Load $50 \mathrm{MVA}, 0.80 \mathrm{pf}$ lagging operating at 124 kV .

