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2. STRESS-STRAIN RELATIONSHIPS 
 

2.1 Introduction 
This chapter summarizes some typical mechanical properties of concrete under uniaxial, 

biaxial, and triaxial states of stress and also some general stress-strain characteristics of 

reinforcement steel. These data, which are essential for the generalized development of 

mathematical modelling of concrete and steel, serve two major purposes: (1) to give guidance 

on the proper type of material behaviour to be developed in mathematical modelling and (2) 

to provide data for the determination of the various material constants which appear in the 

models. However, it is crucial to know that most constitutive models are derived from data 

coming mainly from testing average-age normal-strength concrete under short-term quasi-

static loading. 

Concrete contains a large number of microcracks, especially at interfaces between 

coarser aggregates and mortar, even before any load has been applied. This property is 

decisive for the mechanical behaviour of concrete. The propagation of these microcracks 

during loading contributes to the nonlinear behaviour of concrete at low stress level and 

causes volume expansion near failure. 

Many of these microcracks are caused by segregation, shrinkage, or thermal expansion in 

the mortar. Some microcracks may be developed during loading because of the differences in 

stiffness between aggregates and mortar. These differences can result in the strains in the 

interface zone several times larger than the average strain. Since the aggregate-mortar 

interface has a significantly lower tensile strength than mortar, it constitutes the weakest link 

in the composite system. This is the primary reason for the low tension strength of concrete 

material. From the preceding discussion one can expect that the size and texture of the 

aggregates will have a significant effect on the mathematical behaviour of concrete under 

various types of loading.  

 

2.2 Uniaxial Behaviour of Concrete 
 
2.2.1 Uniaxial compression test 
 

Stress-strain curve. A typical stress-strain relationship for concrete subjected to uniaxial 

compression is shown in Figure (2.1a). The stress-strain curve has a nearly linear-elastic 

behaviour up to about 30 percent of its maximum compressive strength (f'c). For stresses 

above this point, the curve shows a gradual increase in curvature up to about 0.75f'c to 

0.90f'c, whereupon it bends more sharply and approaches the peak point at f'c. Beyond 

this peak, the stress-strain curve has a descending part until crushing failure occurs at 

some ultimate strain εu. 
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When the volumetric strain εv = ε1 + ε2 + ε3 is plotted against stress, as shown in Figure 

(2.1b), initially the change in volume is almost linear up to about 0.75f'c  to 0.90f'c. At this 

point the direction of the volume change is reversed, resulting in a volumetric expansion near 

or at f'c. The stress at which the volumetric strain εv is a minimum is termed critical stress. 

The shapes of the stress-strain curves in Figure (2.1) are closely associated with the 

mechanism of internal progressive microcracking. For a stress in the region up to about 30% 

of f'c, the cracks existing in the concrete before loading remain nearly unchanged. This 

indicates that the available internal energy is less than the energy required to create new 

microcrack surfaces. This stress level has been termed onset of localized cracking and has 

been proposed as a limit of elasticity. 

For a stress between 30 to 50% of f'c, the bond cracks start to extend due to stress 

concentrations at the crack tips. Mortar cracks remain negligible until a later stress range. For 

this stress range, the available internal energy is approximately balanced by the quick crack-

release energy. At this stage, crack propagation is stable in the sense that crack lengths 

rapidly reach their final values if the applied stress is kept constant. 

For a stress between 50 to 75% of f'c, some cracks at nearby aggregate surfaces start to 

bridge in the form of mortar cracks. At the same time other bond cracks continue to grow 

slowly. If the load is kept constant, the cracks continue to propagate with a decreasing rate to 

their final lengths. For compressive stresses above about 75% of f'c, the largest cracks reach 

their critical lengths. The available internal energy is now larger than the required crack-

release energy. Thus, the rate of crack propagation will increase and the system is unstable, 

since complete disruption can occur even if the load is kept constant. The stress level of about 

75% of f'c is termed onset of unstable fracture propagation or critical stress since it 

corresponds to the minimal value of volumetric strain.      

If we unload in the stress range between 50 and 75% of f'c, the unloading curve exhibits 

some nonlinearity. If reloading takes place, a small characteristic hysteresis loop is formed, as 

shown in Figure (2.2). On the average, the unloading-reloading curve is fairly parallel to the 

initial tangent of the original curve. However, for unloading from stresses at about 75% of f'c, 
the unloading-reloading curves exhibits strong nonlinearities (Figure 2.2), and a significant 

degradation of stiffness can also be observed. A reloading shows that the material-stiffness 

properties have changed drastically. 

The progressive failure of concrete near f'c is primarily caused by microcracks through 

the mortar. These microcracks join bond microcracks at the surfaces of nearby aggregates and 

form microcrack zones or internal damage. With increasing compressive strain, damage to 

concrete material continues to accumulate, and concrete enters the descending portion of its 

stress-strain curve, a region by the appearance of macroscopic cracks.  
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The shape of the stress-strain curve is similar for concrete of low, normal, and high-strength, 

as shown in Figure (2.3). A high-strength concrete behaves in a linear fashion to a relatively 

higher stress level than the low-strength concrete, but all peak points are located close to the 

strain value of 0.002. On the descending portion of the of the stress-strain curve, higher-

strength concretes tend to behave in a more brittle manner, the stress dropping off more 

sharply than it does for concrete with lower strength.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Modulus of elasticity. As shown in Figure (2.3), the initial modulus of elasticity of concrete 

is highly dependent on the compressive strength. In lieu of actual test data, the initial 

modulus of elasticity E0 can be calculated with reasonable accuracy from empirical formulas. 

This section will be treated extensively in the next chapter. However, The ACI code adopted 

the following equation to calculate the concrete modulus of elasticity: 

 

       √                                                                                                                      (2.1) 

 

Poisson’s ratio. Poisson’s ratio v for concrete under uniaxial compressive loading ranges 

from about 0.15 to 0.22; a representative value is 0.19 or 0.20. Under uniaxial loading, the 

ratio v remains constant until approximately 80% of f'c, at which stress the apparent 

Poisson’s ratio begins to increase, see Figure (2.4). In the unstable crushing phase v even 

becomes larger than 0.5. 

 

Cyclic behaviour. The behaviour of plain concrete subjected to cyclic compressive loading 

is shown in Figure (2.2). The degradation in both stiffness and strength for concrete with 

increasing number of applied cycles for a stress level of about 0.6f'c is illustrated. For each 

cycle of unloading and reloading, a hysteresis loop is observed. The area of this loop 

decreases with each successive cycle but eventually increases before fatigue failure. 

Fig. 2.3: Complete compressive stress-strain curve, (Wischers, 1978). 
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The stress-strain curve for monotonic loading serves as a reasonable envelope for the 

peak values of stress for concrete under cyclic loading. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Analytical model for cyclic loading. Typical hysteresis curves from experimental data 

(Figure 2.2) are idealized and approximated by straight-line segments for the hysteresis loop, 

see Figure (2.5). The size and shape of the loops are based on several of the experimental 

findings of Karsan and Jirsa (1969), summarized below. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.4: Relation between stress-strength ratio and Poisson’s ratio v. 

Fig. 2.5: A proposed model under cyclic behaviour, (Darwin and Pecknold, 1974). 
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The equation suggested by Saenz (1964) 

 

 

  
   

  *(
  
  
)  +(

 

  
) (

 

  
)
                                                                                                   (2.2) 

 

 

is used to describe the ascending branch of the stress-strain curves shown in Figure (2.5), and 

the falling branch is assumed to be a straight line passing through two points (f'c, εc) and 

(0.2f'c, 4εu), where Eo is the tangent modulus of elasticity at zero stress, f'c is the maximum 

compressive strength, εc is the corresponding strain at f'c, εu is the crushing strain, and         

Es = f'c /εc.   

An empirical relationship is assumed between the stain εcn on the envelope curve at 

unloading, termed the envelope strain, and the residual strain remaining at zero stress εp, 

termed the plastic strain. This relationship  
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is incorporated into the model. 

 

 

2.2.2 Uniaxial tension test 
Figure (2.6) shows the stress-strain curves for concrete in uniaxial tension. All curves are 

nearly linear up to a relatively high stress level. The shape of the curves shows many 

similarities to the uniaxial-compression curves (Figure 2.3). 

For stress less than 60% of the uniaxial tensile strength f't, the creation of new 

microcracks is negligible. Thus this stress level will correspond to the limit of elasticity; 

above this level, the bond microcracks start to grow. The value of onset of unstable crack 

propagation will be about 75% of f't. 
The direction of crack propagation for uniaxial tension is transverse to the stress 

direction. The initiation and growth of every new crack will reduce the available load-

carrying area, and this reduction causes an increase in the stresses at critical crack tips. The 

decreased frequency of crack arrests means that the failure in tension is caused by a few 

bridging cracks rather than by numerous cracks, as it is for compressive states of stress. As a 

consequence of the rapid crack propagation, it is difficult to follow the descending part of the 

stress-strain curve in an experimental test. 
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The modulus of rupture f'r or the split-cylinder strength (the Brazilian test) is often used to 

approximate the tensile strength of concrete. The value of the tensile strength varies widely 

but is normally taken as 

 

                  √                                                                                  (2.4) 

 

Where k, is a constant depenidng on the type of concrete, the type of test and the adopted 

standards. 

 
According to ACI-318-1999 code, the modulus of rupture or flexural tensile strength is 

calculated by the following equation: 

 

        √                   (ACI 318, 1999) 

 

According to CSA-A23.3-94 code, the modulus of rupture is calculated by the following 

equation:  

 

         √                   (CSA-A23.3-94) 

 

The equation includes a factor (λ), which has different values according to the effect of 

concrete density on tensile strength 

 

λ = 1.0 for normal density concrete. 
λ = 0.85 for structural semi- low density concrete in which all the fine aggregate is natural 

sand. 
λ = 0.75 for structural low-density concrete in which none of the fine aggregate is natural 

sand.  
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However, Nilson (1987) and Sarsam and Al-Azzawi (2010) proposed using k value 

approximately equals 0.9. The latter used a wide range of concrete strengths between 41 and 

105 MPa. 

 

 

For normal weight concrete the splitting tensile strength may be taken as follows: 

 

         √                   (Nilson, 1987) 

         √                   (Wafa et al., 1992) 

         √                   (IS-456-2000) 

         √                   (Sarsam and Al-Azzawi, 2010) 

         √                   (ACI-318-11)                                                                              (2.5) 

 

Where f'c and fck are the characteristic cylinder and cube compressive strength in MPa, 

respectively. 

 

The equation proposed by Sarsam and Al-Azzawi is more conservative and based on wider 

range of compressive strengths between 41 and 115 MPa. 

 

 

2.3 Biaxial Behaviour of Concrete 

2.3.1 Biaxial tests 

Figures (2.7) to (2.9) show typical experimental stress-strain curves for concrete under biaxial 

compression (Figure 2.7), combined tension and compression (Figure 2.8), and biaxial 

tension (Figure 2.9). 

First it is seen that the compressive strength increases for the biaxial-compression state. 

A maximum strength increase of approximately 25% is achieved at a stress ratio of σ2/σ1= 0.5 

and is reduced 16% at an equal biaxial-compression state (σ2/σ1= 1). Under biaxial 

compression-tension, the compressive strength decreases almost linearly as the applied 

tensile stress is increased. Under biaxial tension, the strength is almost the same as that of 

uniaxial tensile strength, see Figure (2.10). 

Second, concrete ductility under biaxial stresses has different values depending on 

whether the stress states are compressive or tensile as can be seen throughout Figures (2.7) to 

(2.9). 

  

 

 

 

 

 



 

P
ag

e8
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

P
ag

e9
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

P
ag

e1
0

 

As the failure point is approached, an increase in volume occurs as the compressive stress 

continues to increase, as shown in Figure (2.11). This inelastic volume increase, called 

dilatancy, is usually attributed to progressive growth of major microcracks in concrete. 

Failure of concrete occurs by tensile splitting with the fractured surface orthogonal to the 

direction of the maximum tensile stress or strain. Tensile strains are of crucial importance in 

the failure criterion and failure mechanism of concrete. Failures modes of biaxially loaded 

concrete are shown in Figure (2.12). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2.11: Typical stress-strain curve for concrete volume change under biaxial compression. 
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2.3.2 An equivalent uniaxial stress-strain relationship 

The widely used function for simulation of stress-strain curves of concrete under biaxial 

states of stresses is based on a direct extension of Saenz’s equation in compression in the 

form 

  
  

  [(
   

  
)  ](

 

  
) (

 

  
)
                                                                                         (2.6) 

where 

σ, ϵ     = stress and strain in principal-stress direction, 

σp, ϵp  = experimentally determined values of maximum principal stress and corresponding 

strain, 

a      = experimentally determined coefficient representing initial tangent modulus and a 

linear relationship for tension. 

This equation has a horizontal tangent modulus at the point of peak stress and corresponding 

strain (σp, ϵp). For uniaxial stress state, the point of peak stress and strain (f'c , ϵc) as shown in 

Figure (2.5), and uniaxial initial elastic modulus is a = E0. 

For biaxial stress states, the maximum stress point (σp) is the value which can be 

determined from the biaxial strength envelope like that in Figure (2.10), and the 

corresponding value of maximum micro-compressive strain (ϵp) in the major direction can be 

fixed at about 3000 for uniaxial and biaxial compression states (Figure 2.7). 

However, since under biaxial compression-tension the compressive strength (σp), 

decreases almost linearly as the tensile stress is increased, the corresponding decrease in 

compressive strain (ϵp) can be estimated by proportioning its value to the tensile-stress 

increase (Figure 2.8). Note that the value of (ϵp) in the minor direction will vary.  

The biaxial compressive stress-strain curves of Figure (2.7) show increasing initial 

stiffness for increasing values of lateral compression, caused mainly by the effect of 

Poisson’s ratio. Thus the strain measured in the same direction as the stress includes the 

contribution from the lateral direction. Similarly, Poisson’s ration has a decreasing effect on 

the initial stiffness of the biaxial tensile stress-strain curves (Figure 2.9). 

For a linearly elastic isotropic material, the biaxial stress-strain relation can be expressed 

as 

  
   

    
                                                                                                                     (2.7) 

where α =  ratio of principal stress in orthogonal direction to principal stress in direction 

considered 

E0 = initial tangent modulus in uniaxial loading 

v = Poisson’s ratio in uniaxial loading. 
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As an approximation, the effective initial modulus E0/(1-vα), due solely to Poisson’s effect, 

can be used as the initial modulus 

  
  

    
                                                                                                                           (2.8) 

in Equation (2.6), which describes the nonlinear biaxial stress-strain relationship of concrete. 

Since the biaxial stress-strain equation passes through the point of peak stress and strain     

(σp, ϵp) which accounts mainly for the microcrack confinement effect in the presence of 

biaxial stress, the tangent modulus, which is the slope at any point of the biaxial stress-strain 

curve  (Et = dσ/dϵ), includes both the microcrack confinement effect and Poisson’s ratio 

effect. 

Introducing the constant (2.8) into Equation (2.6) leads to 
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                                                                      (2.9) 

where Es = σp / ϵp is the secant modulus of elasticity at peak stress, see Figure (2.13) 
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The point of maximum compressive stress and strain (σp, ϵp) under biaxial loading is a 

function of the principal-stress ratio (α = σ1/σ2), the uniaxial compressive strength (f'c), and 

the strain at the peak uniaxial stress (ϵc). The values of the maximum stresses in the two 

principal directions σ1p and σ2p are obtained from the modified biaxial strength envelope of 

Kupfer and Gerstle (1973). It is assumed that the maximum tensile stress the concrete can 

withstand is the uniaxial tensile strength f't. 

The biaxial strength envelope of Figure (2.10) is divided into four regions, which 

depends on the stress state as represented by the stress ratio α. Compressive stresses are 

assumed to be negative and tensile stresses positive, and the principal directions are chosen 

so that σ1 ≥ σ2 algebraically. 

The four regions of the strength envelope with the accompanying expressions for the 

maximum stresses σ1p, σ2p and their corresponding strains ϵ1p, ϵ2p are summarized as follows: 

In the compression-compression region (σ1 = compression, σ2 = compression, 0 ≤ α ≤ 1) 
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  ́               ( 

   

 ́ 
  )                                                  (2.10) 
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]            (2.11) 

In the compression-tension region (σ1 = tension, σ2 = compression, -0.17 ≤ α ≤ 0) 
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]                           (2.12) 

                    
   

  
                                                                             (2.13) 

In the tension-compression region (σ1 = tension, σ2 = compression, - ∞ ≤ α ≤ - 0.17) 
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]                           (2.14) 

     ́             
   

  
                                                                                  (2.15) 

In the tension-tension region (σ1 = tension, σ2 = tension, 1 ≤ α ≤ ∞) 

     ́                 
 ́ 

  
     

   

  
                                                    (2.16) 
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The basic concept of this model is to treat the biaxial stress-strain behaviour of concrete as 

an equivalent uniaxial relation (Figure 2.13). According to this approach, the strain 

increment in each principal direction is evaluated solely by the principal-stress increment in 

the same direction; the corresponding tangent stiffness, which is a function of the principal-

stress ratio α, accounts for all the biaxial effects. In this, Poisson’s ratio is assumed to be a 

constant near 0.2. According to experimental evidence, this is fairly reasonable 

approximation up to about 80% of peak stress, but after this point it deviates progressively 

(See Figure 2.4). 

The main advantages of this model are that it is simple and the required data are readily 

obtainable either from uniaxial tests on the concrete or from various biaxial tests reported in 

the literature. The model is mainly applicable to planar problems such as beams, panels, and 

thin shells, where the stress is predominantly biaxial. However, it is immediately apparent 

form Figure (2.11) that there is an abrupt volume increase near peak stress under biaxial 

compression. Such behaviour cannot be accounted for by the present equivalent uniaxial 

approach. Thus the model described will have little validity in three-dimensional situations. 

 

2.3.3 Octahedral stress-strain relationships 

The octahedral stresses and strains are defined by 
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 ]                                         (2.18)     

in which σoct and τoct are the octahedral (mean normal, or hydrostatic) and shear (or 

deviatoric) stresses, respectively, and ϵoct and γoct are the octahedral normal (or volumetric) 

and shear (or deviatoric) strains, respectively. This representation decouples the volume 

change and the distortional or shape-change portions of stress and strain; the stress increment 

dσoct and strain increment dϵoct associated with the volume change are related by the tangent 

bulk modulus Kt and the distortional quantities dτoct andn      mmmn dγoct by the tangent shear 

modulus Gt in the forms    

   
     

      
 

  

 (    )
             

     

      
 

  

 (    )
                                                    (2.19) 

The moduli Kt and Gt (or Et, vt) in Equations (2.19) are tangent values, which can be 

determined as the slopes of the volumetric (σoct - ϵoct ) and deviatoric (τoct - γoct) stress-strain 

curves; according to this assumption, the bulk modulus is a function only of the volumetric 

and the shear modulus a function only of the deviatoric stress or strain levelnnnnnn 
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Deviatoric stress-strain relations. Figure (2.14) shows mean deviatoric (τoct - γoct) 

stress-strain curves obtained from biaxial-compression tests under four different stress ratios.  

 

 

 

 

 

 

 

 

 

To approximate these curves Gerstle (1981) proposed the exponential form 

          [     (
   

     
    )]                                                           (2.20)     

in which τoctp is the octahedral shear strength and G0 is the initial shear modulus. 

Differentiating (2.20), we obtain the tangent shear modulus 

   
     

     
       (

   

     
    )                                                               (2.21)     

Solving Equations (2.20) and (2.21) to eliminate γoct gives a relation between the tangent 

shear modulus and the stress level 

      (  
    

     
)                                                                                   (2.22)     

Equation (2.22) shows that the assumption of an exponential τoct - γoct curve leads to a shear 

modulus which decreases linearly for its initial value G0 for τoct = 0 to zero at failure, as 

shown by the solid line in Figure (2.15). 

Equation (2.22) and the solid line of Figure (2.15) indicate no linear range of concrete 

behaviour, in fact, tests show that the shear stiffness decreases more slowly than indicated by 

Equation (2.22), as represented by the dashed curve of Figure (2.15). 
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The initial shear modulus G0 in Equation (2.22) can be obtained through the second equation 

of (2.19) from a uniaxial-compression test, which allows determination of the modulus of 

elasticity E0 and Poisson’s ratio v0. Alternatively, E0 can be obtained from the ACI code 

equation (2.1), and v0 for concrete is often assumed to be 0.2. 

The deviator strength τoctp can be obtained from a biaxial strength envelope, as shown in 

Figure (2.10). To find τoctp form this figure, we reduce the second equation of (2.17) to the 

biaxial case by setting σ3 =0 and letting the biaxial stress ratio α = σ1/σ2  

      
√ 

 
 √                                                                                    (2.23)     

in which σ2p is the major principal stress at failure for the stress ratio α. For the strength 

variation shown in Figure (2.10) for different stress ratios, the deviator strength τoctp can be 

calculated using Equation (2.23). Knowledge of the uniaxial compression strength f'c and use 

of a suitable strength envelope, as shown in Figure (2.10), permit determination of the 

deviator strength τoctp for any stress ratio.  

 

Volumetric stress-stress rations. Quantitative evidence of the volumetric behaviour of 

concrete under biaxial compressive-stress states varies widely. It has been generally accepted 

that under increasing compression, the material first compacts and eventually dilates due to 

microcracking (Newman and Newman, 1969); but it is not at all clear at what stage this 

occurs (Gerstle, 1981). Figure (2.16a and b) shows results from two supposedly identical 

biaxial-test series on one concrete (Two different labs). In the first one, the dilatation occurs 

immediately before failure, i.e., when σoct = σoctp; in the second one, this dilatation begins at 

stress levels from 70 o 85% of failure. It appears that the details of load application and 

measurement ay have great influence on the observed data. 

The variation of moduli corresponding to these two series of stress-strain curves appears 

quite different, as shown by the dashed line in Figure (2.17). Possible linearizations are 

shown by solid and dash-dot lines in Figure (2.17a). Here again, trade-offs between reality 

and simplicity are indicated; because the volumetric portion is less significant in biaxial than 

in triaxial cases, and because of the apparent vagueness of experimental evidence, 

considerable simplification may be in order.  
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The following possible approximations shown in Figure (2.17a) are proposed by Grestle 

(1981): constant mean bulk modulus, shown by dash-dot line in Figure (2.17a), 

                                                                                                              (2.24)     

and linearly varying bulk modulus, shown by solid line in Figure (2.17a), 
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     (    
    

     
)                                                                                   (2.25)     

where K0 = initial bulk modulus 

     C1, C2 = experimental constants 

       σoctp = hydrostatic stress corresponding to failure 

Using the first equation of (2.17), with σ3 = 0 and α = σ1/σ2 , we have  

      
 

 
(   )                                                                                       (2.26)     

The variation of bulk modulus shown in Figure (2.17b) leads to a much more complicated 

formulation, which may not be warranted in the view of the conflicting experimental 

evidence. 

Secant shear modulus. Using results from many tests, Cedolin et al. (1977) formulated 

the variation of the secant shear modulus Gs as  

  

  
     (         )                                                                       (2.27)     

This equation is independent of the concrete strength τoctp; its variation is shown as the solid 

curve in Figure (2.18). 

To compare the results of the tangent modulus Gt, Equation (2.22), with the secant 

modulus (2.27), we obtain the nondimensionalized secant modulus by appropriate 

manipulation of Equation (2.20) as   
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For the concrete used in the tests by Gerstle et al. (1978) and Grestle (1981) 2G0=2.9×10
3
 

kips/in
2
 (20×10

3
 N/mm

2
), and the deviator strength τoctp varied between 2.32 and 2.55 kips/in

2
 

(16.0 to 37.1 N/mm
2
), depending on the stress ratio. Inserting theses values in Equation 

(2.28) and plotting results in Figure (2.18) by the dash and dash-dot curves, we observe a 

close correlation between Cedolin’s secant formulation over the major portion of the range of 

Gerstle’s tangent formulation.    

 

2.4 Triaxial Behaviour of Concrete 

2.4.1 Triaxial tests 

Stress-strain behaviour. Figures (2.19) shows typical stress-strain curves from the tests 

by Richart et al. (1928). Their tests were conducted at low or moderate volumetric 

compression (or confining) stresses. Balmer (1949) conducted triaxial tests at very high 

confining-stress levels (Figure 2.20). As these curves show, depending on the confining 

stress, concrete can act as a quasi-brittle, plastic-softening, or plastic-hardening material. 

This is because under higher confining stresses the possibility of bond cracking is greatly 

reduced and the failure mode shift from cleavage to crushing of cement paste. Figures (2.19) 

and (2.20) show that the axial strength increases with increasing confining pressure. Under 

very high confining stresses, extremely high strengths have been recorded (Figure 2.20). 

 Contrary to popular belief, concrete exhibits nonlinear stress-strain behaviour under 

hydrostatic compressive loading (Figure 2.21). The hydrostatic-pressure-volumetric-strain 

curve in Figure (2.21) shows a reversal in curvature on loading. On unloading, the slope is 

almost constant and is very close to the slope during initial loading, except for a sharp tail in 

the low-stress range similar to that of cyclic uniaxial case (Figure 2.2). Analysis of test data 

indicates that when it is subjected to a constant hydrostatic stress (or constant σoct) and an 

increasing shear or deviatoric stress (or τoct), concrete undergoes not only octahedral shear 

strain γoct but also consolidation in the form of compressive octahedral normal strain ϵoct. 
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Failure surface. Under triaxial loading, experiments indicate that concrete has a fairly 

consistent failure surface that is a function of the three principal stresses. If isotropy is 

assumed, the elastic limit (onset of stable crack propagation), the onset of unstable crack 

propagation, and the failure limit all can be represented as surfaces in three-dimensional 

principal-stress space. Figure (2.22) shows schematically the elastic-limit surface and failure 

surface. For increasing hydrostatic compression (along the σ1 = σ2 = σ3 axis), the deviatoric 

sections (planes perpendicular to the axis σ1 = σ2 = σ3) of the failure surface are more or less 

circular, which indicates that the failure in this region is independent of the third stress 
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invariant. For smaller hydrostatic pressures, these deviatoric cross sections are convex and 

noncircular. The failure surface can be represented by three stress invariants.  

 

 

 

 

 

 

 

 

 

2.5 Stress-Strain Relations for Steel 

2.5.1 General characteristics of reinforcing steel 

Some typical stress-strain curves for different qualities of reinforcement steel are shown in 

Figure (2.24). 

The stress-strain curves for steel are generally assumed to be identical in tension and 

compression. Also, if a steel specimen is loaded at a fast rate, the observed yield strength is a 

little higher. An increase of about 14% has been observed for a strain rate of 0.01 per second. 
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2.5.2 Reversed and repeated stress-strain behaviour 

Stress-strain relationship for reinforcing steel in cyclic loading is considerably affected by 

previous plastic straining, as observed in Figure (2.25). A hot-rolled steel is loaded into the 

plastic region, whereupon cycles of unloading and reloading are performed. The pronounced 

feature of the cyclic stress-strain curves is the absence of the typical yield plateau observed in 

monotonic loading (Figure 2.24). The unloading portion of the curve is linear, and the slope 

is equal to the initial modulus of elasticity. Subsequent cycles have features similar to the first 

two cycles after the first load reversal. Note the unequal raising of the new yield points in 

loading and in reversed loading which define the subsequent linear-elastic portion of the 

stress-strain curve; i.e., a raising of the yield point in loading is followed by a lowering of the 

yield point when the stress is reversed. This is known as the Bauschinger effect. Figure (2.25) 

shows that the linear portion of the stress-strain curve is nearly constant during the cycles.   

 

 

 

 

 

 

 

 

 

 

 

2.5.3 Stress-strain models for reinforcing steel 

Since steel-reinforcement elements in concrete construction are mostly one-dimensional, it is 

generally not necessary to introduce the complexities of multiaxial constitutive relationships 

for steel. 

For simplicity in the design calculations, it is often necessary to idealize the one-

dimensional stress-strain curve for steel. Three different idealizations, shown in Figure (2.26) 

have been used, depending on the accuracy required. 
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