FORMS OF WRITE C++ PROGRAM

FIRST FORM : We will use this form in our lectures, this is the simplest one .

include <iostream:>

using namespace std;

-] int main {)

i

1

cout << " This is My program ‘\n ‘n";
cout << " I am a c++ programer Yn o ";
return 0 ;

(,sJJE'JSM'P.JA:S-’w‘U“JM AN 5 jualaal) [clawlal) 3ala AU dda yal) ﬁﬂ\e}hﬂaﬁﬂ\m

SECOND FORM : We must use (std ::) before all instruction (included in
standard (std) libraries) in our program instead of using the second line in first

form (using namespace std;)

¥ include <iostream>
-] int main ()
i
std :: cout << "™ This is My program “n \n";
std :: cout << " I am a c++ programer Yo \n ";
return 0 ;

2 &ﬁﬂ\dﬁ)é:s.\w\u{)u AN 5 jualaal) [clawlal) 3ala AU dda yal) &M\ejﬂ@ﬂ\m

THIRD FORM : In this form, we must write the second line with each
instruction included in these library instead of using the second line in first form

(using namespace std;) for one time.

¥ include <iostream>

using std :: cout;
-] int main ()
{
cout << " This is My program “n \n";
cout << " I am a c++ programer ‘\n \n ";

recturn 0O !

&ﬁ)ﬁ‘ & d dalal) (e PRA A b palaall [Clawlad) 3ala :\,.um\ hﬁ)ﬂj‘

4 pal) o glall 4 1) 408

FOURTH FORM : This form was using in old version , by added (.h) with
<iostraem > instead of using the second line in first form

(using namespace std;).

¥ include <iostream.h>
-] int main ()
i
cout << " This is My program “n \n";
cout << " I am a c++ programer \n \n ";
return 0 ;

. gJJ,USS\AgJA:S.\Ld\UAJM AN 5 jualaal) [clawlal) 3ala AU dda yal) ﬁﬂ\ej&ﬂaﬁﬂ\m

Note : the fourth form may give us errors with new version . Therefore, we
prefer the first form all times .

%|D\.'JJ:-C3\‘JJ-E}%§:"}:
X

Solution Explorer - Solutio.. v &

"X i
i | & &
22 B4 (Global Scope) v " (I3
m Solution 'Ferms of programs’ (1 - - 3
EH Forms of proarams # include <iostream.h> m
S prog S int main () i
. [Header Files o
. [Resource Fil { i}
o Esource s cout << " This is My program \n \n"; g
B EBSOU’CE Files cout << " I am a c++ programer \n \n "; =
- ¢ FormLepp return 0 ; S
T
g
} ==
¢ i 3 &
@Soluti... |@CI3;5... |Prope... < | I | 4
. v
| AUWamings | (i) 0 Messages
Description File Line
fatal error C1083: Cannot open include file: 'iostream.h's No such file or directory forml.cpp

| Code Defintion Window |L;'EI Call Browser | =] Output |,_‘B Error List |

Ready

5 A 5SH 3 53 1 Balall G te AENEY 5 palaal) [cilawlal) 3ala AU A palf 48 pual) a glall 4 i) 48

When we press to (Ctrl + F5) to run our program, we will get
the same output with all previous forms

-

BN C\Windows\system32hcmd.exe NS | == |""3§"-J

Tl

Thiz is My program -

I am a c++ programer

Preszs any key to continue . . .

A 9Sh a Balall G yda AENEY 5 pdalaal) [cilawdall 3aLa A5 As pall 48 pual) a glall 4 i) 48

Variables. Data Types.

Let us think that | ask you to retain the number 6 in your mental
memory, and then | ask you to memorize also the number 3 at the
same time. You have just stored two different values in your
memory. Now, if | ask you to add 2 to the first number | said, you
should be retaining the numbers 6 (that is 6+2) and 3 in your
memory. Values that we could now for example subtract and obtain
5 as result.

‘EAJ,USS\.QJA:S.\LJ\UAJM QAN B palaal) [clowdall 5ala AU dda yal) bﬂ\a\gﬁaﬂ@ﬂ\a&s

The whole process that you have just done with
your mental memory is a simile of what a
computer can do with two variables. The same
process can be expressed in C++ with the
following instruction set:

a=6;
b=3;

- + /Z; , N
a=a+l; 1000 Wiz
result = a - b; e

‘EAJ,USS\.QJA:S.\LJ\UAJM QAN B palaal) [clowdall 5ala AU dda yal) bﬂ\a\gﬁaﬂ@ﬂ\a&s

Obviously, this is a very simple example since we have only used
two small integer values, but consider that your computer can

store millions of numbers like these at the same time .

Therefore, we can define a variable as a portion of memory to
store a determined value.

Each variable needs an identifier that distinguishes it from the
others,

for example, in the previous code the variable identifiers were 4,

b and result, but we could have called the variables any
names we wanted to invent, as long as they were valid identifiers.

A 9Sh a Balall G yda AENEY 5 pdalaal) [cilawdall 3aLa A5 As pall 48 pual) a glall 4 i) 48

Identifiers:

A valid identifier is a sequence of one or more letters,

digits or underscore characters (_). Neither spaces nor
punctuation marks or symbols can be part of an identifier.

Only letters, digits and single underscore characters are

valid. In addition, variable identifiers always have to begin
with a letter. They can also begin with an underline
character (_), but in some cases these may be reserved for
compiler specific keywords or external identifiers, as

well as identifiers containing two successive underscore
characters anywhere. In no case they can begin with a
digit.

A 9Sh a Balall G yda AENEY 5 pdalaal) [cilawdall 3aLa A5 As pall 48 pual) a glall 4 i) 48

Another rule that you have to consider when creating your own identifiers is that they
cannot match any keyword of the C++ language nor your compiler's specific ones, which

are reserved keywords. The standard reserved keywords are:

auto default
break delete
case do
catch double
char Else
class enum
const extern

1 5 SN 2 Balall G e

friend

goto

if

Inline

int

long

operator

private

protected

public

register

return

short

AENEY 5 palaal) [cilawlal) 3ala

sizeof

static

struct

switch

template

this

throw

Al dda yalf

typedef

union

unsigned

virtual

void

volatile

while

4 pual p glall Ay) 448

Additionally, alternative representations for some operators cannot be used
as identifiers since they are reserved words under some circumstances:

Your compiler may also include some additional specific reserved keywords.

Note: thec++ language is a ""case sensitive" language. That means that an
identifier written in capital letters is not equivalent to another one with the same name
but written in small letters. Thus, for example, the RESULT variable is not the same as
the result variable or the Result variable. These are three different variable identifiers.

12 gl a0 1 kel e AN 5ol [clpdall e Al Al al) 2 puall ghall Ay 20 A

Fundamental data types

When programming, we store the variables in our computer's
memory, but the computer has to know what kind of data we want
to store in them, since it is not going to occupy the same amount of
memory to store a simple number than to store a single letter or a
large number, and they are not going to be interpreted the same
way.

The memory in our computers is organized in bytes. A byte is
the minimum amount of memory that we can manage in C++.

A byte can store a relatively small amount of data. In addition,
the computer can manipulate more complex data types that come
from grouping several bytes, such as long numbers or non integer
numbers.

A 9Sh a Balall G yda AENEY 5 pdalaal) [cilawdall 3aLa A5 As pall 48 pual) a glall 4 i) 48

Next you have a summary of the basic fundamental data types in C++, as well as

the range of values that can be represented with each one:

Name Description Size* Range*
= | signed: =128 to 127
¢ch
ar Character or small integer. 1byte unsigned: 0 to 255
short int signed: -32768 to 32767
(shoxt) s ok (2P¥teS lunsigned: 0 to 65535
signed: -2147483648 to
int Integer. 4bytes 2147483647
unsigned: 0 to 4294967295
sighed: -2147483648 to
long int (long) jLong integer. 4bytes 2147483647
unsigned: 0 to 4294967295
bool Boolean value. It can take one of two values: true 1byte Nrie o faloa
or false,
float Floating point number. 4bytes +/- 3.4e +/- 38 (~7 digits)
double Double precision floating point number, I,Bbytes. +/= 1.7e +/- 308 (~15 digits)
long double llong double precision floating point number. {Bbytes | +/- 1.7e +/- 308 (~15 digits)
wchar_t Wide character. g 0 1 wide character
ytes
14 gl an 1 Balall e AN 5ol [clpdall e Al Al al) 2 puall ghall Ay 20 A

Declaration of variables

In order to use a variable in C++, we must first declare it specifying which data type we want
it to be. For example:

int a;

float X;
These are two valid declarations of variables. The first one declares a variable of type int
with the identifier a. The second one declares a variable of type float with the identifier X .
Once declared, the variables a and X can be used within the rest of their scope in the
program.

If you are going to declare more than one variable of the same type, you can declare all of
them in a single
statement by separating their identifiers with commas. For example:

inta, b, c;
This declares three variables (a, b and c), all of them of type int, and has exactly the same
meaning as:

int a;

int b;

int c;

A 5S35 1 Bkl L te AENEY B plalaal) [cilaudall 3aLa AU s yall 48 pual) 2 glalt 4y i) 48

The integer data types char, short, long and int can be either signed or unsigned
depending on the range of numbers needed to be represented. Signed types can

represent both positive and negative values, whereas unsigned types can only
represent positive values (and zero). This can be specified by using either the specified
signed or the specified unsigned before the type name. For example:

unsigned short int NumberOfBrothers;

signed int MyAccountBalance;

By default, if we do not specify either signed or unsigned most compiler settings
will assume the type to be signed, therefore instead of the second declaration above
we could have written:

int MyAccountBalance;
with exactly the same meaning (with or without the keyword signed)

An exception to this general rule is the char type, which exists by itself and is
considered a different fundamental data type from signed char and unsigned char,

thought to store characters. You should use either sighed or unsigned if you intend to
store numerical values in a char-sized variable.

‘EAJ,USS\.\.A.JA:S.\LJ\L}«JM QAN B palaal) [clowdall 5ala AU dda yal) &M\a\gﬁaﬂ@ﬂ\m

short and long can be used alone as type specifies. In this case, they refer to their
respective integer fundamental types: short is equivalent to short int and
long is equivalent to long int. The following two variable declarations are equivalent:
short Year;
short int Year;
Finally, signed and unsigned may also be used as stand alone type specifies, meaning
the same as signed int and unsigned int respectively. The following two declarations
are equivalent:

unsigned Average;
unsigned int Average;

To see what variable declarations look like in action within a program, we are going to see
the C++ code of the example about your mental memory proposed at the beginning of
this lecture:

‘EAJ,IJSS\.\.A.JA:S.\LAJ\L}«JM QAN B palaal) [clowdall 5ala AU dda yal) &M\ejﬂ@ﬂ\%&s

1 // operating with wariables
L$include <iostream>
using namespace std;
] int main ()
{
// declaring wvariables:
int a, b:
int result;
/! process:

a = &:
b = 3;
a=a+ 2:

result = a - b;

// print out the result:

cout << "‘\n ‘\n \t The result iz : " << result << "\n ‘\n \n" ;
// terminate the program:

return 0;

}

18 i SH a0 1 Balad e AAN 5 yalaal) [clpedall ke Ayl Alayal) 28yl p glald Ay) A58

to RUN the program, we will press (Ctrl +F5) to get the output

-

| B C\Windows\system32icmd.exe

EEREE X

The result is =

'@Pre=z=z any key to continue . . .

I w 1T L

A 9Sh a Balall G yda AENEY 5 pdalaal) [cilawdall 3aLa A5 As pall 48 pual) a glall 4 i) 48

