Basic Input / Output

Until now, the example programs of previous lectures provided
very little interaction with the user, if any at all.

Using the standard input and output library, we will be able to
interact with the user by printing messages on the

screen and getting the user's input from the keyboard.

C++ uses a convenient abstraction called streams to perform
input and output operations in sequential media such
as the screen or the keyboard. A stream is an object where a
program can either insert or extract characters to/from it

The standard C++ library includes the header file iostream,
where the standard input and output stream objects
are declared.

A 5SH 3 53 1 palall L sta dag)) 3 palaall cluwlall 3ala AUl s jal) 48 puall o glall 4) 48

Standard Output (cout)

By default, the standard output of a program is the screen, and the C++ stream object defined to

access it is cout. cout is used in conjunction with the insertion operator, which is written as << (two
"less than" signs).

cout << "The sentence": S/ oprints The sentence on SCresn
cout << 150:; S prints number 150 on screen
cout << Z; // prints the content of Z on screen

The << operator inserts the data that follows it into the stream preceding it. In the examples
above it inserted the constant string The sentence, the numerical constant 150 and variable Z into
the standard output stream cout.

Notice that the sentence in the first instruction is enclosed between double quotes (")
because it is a constant string of characters. Whenever we want to use constant strings of
characters we must enclose them between double quotes (") so that they can be clearly
distinguished from variable names. For example, these two sentences have very different results:

cout << "My Age": // prints My Age

—_— et

cout << My Age:; // prints the content of My Age wvariable

The insertion operator (<<) may be used more than once in a single statement:

cout << "Hello, " << "I am " << "a C++ Programmer ";

r

2 A 5SH 3 53 1 palall L sta dag)) 3 palaall cluwlall 3ala AUl s jal) 48 puall o glall 4) 48

Standard Input (cin).

The standard input device is usually the keyboard. Handling the standard input
in C++ is done by applying the overloaded operator of extraction (>>) on the

cin stream. The operator must be followed by the variable that will
store the data that is going to be extracted from the stream. For example:

int age;
cin >> age;

The first statement declares a variable of type int called age, and the second

one waits for an input from cin (the keyboard) in order to store it in this
integer variable.

cin can only process the input from the keyboard once the RETURN key has
been pressed. Therefore, even if you request a single character, the extraction

from cin will not process the input until the user presses RETURN after

the character has been introduced.

You must always consider the type of the variable that you are using as a
container with cin extractions. If you request an integer you will get an integer,
if you request a character you will get a character and if you request a

string of characters you will get a string of characters.

oSl 33 1 oalall g dagl)l B palaall cladaldl 3aLa AU A pall 48 puall o glall 4y 1) 48

:‘---:v,-v-"_-_‘
e ae b WA ' WA WA WA —0-‘—#--_;‘-—
- T s - P p—
fFinclude <iostream>
using namespace std;
int main ()
{
¢
- .- - .
- -
~y << n\ « P.:‘:‘D:‘ ST aYy ar svramay walita s "e.
cout \t Please enter an integer value: -
iR > L7
cout << " \n \t \t The value you entered is " << 1i;
" LTPAMIIY S = PUE A e E B S ~ " "
cout << \nl \n \t \t your integer value * 2 = < IWZ € PoNE - "}

>

10

”-an
- -

"
-

L)

B C\Windows\system32\cmd exe = = (e | B8 C:\Windows\system32\cmd.exe |—‘—‘—J':' Bl o

Please enter an integer value: 3

Please enter an integer value: 8

. The value you entered is 3
The value you entered is 8

» int » value * 2 = 6.
your integer value * 2 = 1b. your integer vatue

Press any key to continue . .

Press any key to continue . . .

Output 1 when i=8 Output 2 when i=3

oSl 33 1 oalall g dagl)l B palaall cladaldl 3aLa AU A pall 48 puall o glall 4y 1) 48

Operators

Assignment (=)

w i QA VUL

:
'
1
int a; b 2 AR
— "‘
a = 1U; RAsdVU, X
b = 4 a a
a e, B
a b a:4, b:4
i : <
b = 7 a*4
: AY4, X
.

Q
0
5

ot
A
A
VU

The program

A 9SI 2 1 oalall G sda dagl) B puaalaall

B CWindows\systemi2icmd.xe

Press any key to continue . . .

The output

Glawlal) 3ala AU A pall

b ual) o glall &y) A6

Arithmetic operators (+, -, *, /, %)

The five arithmetical operations supported by the C++ language are:

+ addition

- subtraction

* multiplication

/ division

% modulo
Operations of addition, subtraction, multiplication and division literally correspond with
their respective mathematical operators. The only one that you might not be so used to

see is modulo; whose operator is the percentage sign (%). Modulo is the operation that
gives the remainder of a division of two values. For example, if we write:

a=11% 3;

the variable & will contain the value 2,
since 2 is the remainder from dividing 11 between 3.

6
oSl 33 1 oalall g dagl)l B palaall cladaldl 3aLa AU A pall 48 puall o glall 4y 1) 48

Compound assignment (+=, -=, *=, /=, %=

When we want to modify the value of a variable by performing an operation on the value currently
stored in that variable we can use compound assignment operators:

expression is equivalent to
value += increase; |value = value + 1increase;
a -= b; a=a-5;
a /= b; a=a/ b;
price *= units + 1;|price = price * (units + 1);

g i, e e e

T eI AR =1 iy
s lIlCLuUdS < lOoJ Ll call?

using namespace std;

N estat - Eaks = e e

and the same for all other operators. For example:

g~

BN C\Windows\system32\cmd.exe
5

Press any key to continue . . .

|_l=l B |

int main ()
10T &, =3
a = |52
a+=ye souival
CouUT €€ & £ "\n \n®
recurn 0:
SN 53 s salal) L yta dagl)l B palaall cladaldl 3aLa AU A pall 48 puall o glall 4y 1) 48

Increase and decrease (++, --)

Shortening even more some expressions, the increase operator (++) and the
decrease operator (--) increase or reduce by one the value stored in a variable.
They are equivalent to +=1 and to -=1, respectively. Thus:

c++;
c+=1;
c=c+1;

Relational and equality operators (==, =, >, <, >=, <=)

In order to evaluate a comparison between two expressions we can use the relational
and equality operators. The result of a relational operation is a Boolean value that can

only be true or false, according to its Boolean result.
We may want to compare two expressions, for example, to know if they are equal or if
one is greater than the other is. Here is a list of the relational and equality operators that

can be used in C++:

oSl 33 1 oalall g dagl)l B palaall cladaldl 3aLa AU A pall 48 puall o glall 4y 1) 48

Relational and equality operators (==, 1=, >, <, >=, <=)

Equal to
Not equal to

> |Greater than
< |Less than
>=|Greater than or equal to
<=|Less than or equal to
(9 == 8) // evaluates to false.
Here there are some examples: (7 > &) // ewvaluates to true.
(5 '= 4} J/ evaluates to true.
(2 >= 2) // evaluate=s to TCrue.
(3 < 3) // evaluates to false.

Of course, instead of using only numeric constants, we can use any valid expression,

including variables. Suppose that a=2, b=3 and c=6,

(a == 35) // evaluates to false =ince a i= not equal to 5.
(a*b >= cC) // evaluates Lo true =ince (2%*3 >= &) 1= true.
(b+4 > a*c) // evaluates to false =zince (344 > 2*6) i=s false.
((b=2) — a) // evaluates Lo true.

9
oSl 33 1 oalall g dagl)l B palaall cladaldl 3aLa AU A pall 48 puall o glall 4y 1) 48

Logical operators (!, &&, ||)

The Operator ' is the C++ operator to perform the Boolean operation NOT, it has only one

operand, located at its right, and the only thing that it does is to inverse the value of it,
producing false if its operand is true and true if its operand is false. Basically, it returns the
opposite Boolean value of evaluating its operand. For example:

1{9 == 8) /4 ewvaluates to false because the expression at its right (9 == 9) i= true
T <= 3) Jf evaluates=s to true because (7 <= 5) would be false

Ttrue f ¢/ ewvaluates to false

Ifal=se // ewvaluates to true.

The logical operators && and | | are used when evaluating two expressions to obtain a
single relational result. The operator && corresponds with Boolean logical operation AND.
This operation results true if both its two operands are true, and false otherwise. The

following panel shows the result of operator && evaluating the expression Q && b :
&& OPERATOR

a b a&&b
true |[true |true
true [falselfalse
falseltrue [false
false(falselfalse

A 5SH 3 53 1 palall L sta dag)) 3 palaall cluwlall 3ala AUl s jal) 48 puall o glall 4) 48

The operator || corresponds with Boolean logical operation OR. This operation
results true if either one of its two operands is true, thus being false only when

both operands are false themselves. Here are the possible resultsofa || b :

|| OPERATOR

a b al]|lb
true |true |true
true |falseltrue
false|true [true
false|false|false

For example:

HH
Il
I
— W
—

g e
g ot

Ll L
0N

o~
oin
Lo

S

o,

A 5SH 3 53 1 palall L sta dag)) 3 palaall cluwlall 3ala AUl s jal) 48 puall o glall 4) 48

Conditional operator (?)

The conditional operator evaluates an expression returning a value if that expression is

true and a different one if the expression is evaluated as false. Its format is:

condition ? resultl : result2

If condition is true the expression will return resultl, if it is not it will return result2.

TS 24 1 3 /f returns 3, =ince 7 i=s not equal to 5.
T=—=2+2 2?2 4 1 3 // return=s 4, =since 7 1= egqual to S+42.
2»3 ? a : b // recurn=s the wvalue of a, =since 5 i=s greater than 3
ar*b ? a : b // returns whichever is greater, a or b.

120 o a0 1 saladl e Aoyl) 3 palaall clpdal) Sale AL A yal) 2 puall ghall Ay 20 A0S

= [a>b)
<< ¢ €€

SoOuv

? A

LU e

BN C\Windows\system32hcmd.exe

Press any key to continue . . .

The Output

 —

" 58N 2 1 odlall i yia

dag)) B _pualaall

Slawlad) 3ala

L0l Aa)

PR PRREWER?

