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3. ELASTIC BEHAVIOUR 

 

This section introduces some fundamental approaches to describe composite materials. These 

methods can be used to estimate the elastic moduli of concrete if the elastic moduli of the 

concrete phases and their volume fractions are known. 

Special care should be taken when estimating the elastic modulus for different types of 

concrete (i.e., high-strength concrete, light-weight aggregate concrete, and mass concrete). 

For instance, the maximum size aggregate and the volume fractions of aggregate and cement 

paste in mass concrete are quite different from structural concrete, therefore, predicting the 

elastic modulus using the ACI equation would not be reliable. Assume you are the designer 

of a large concrete dam and you want to perform a preliminary thermal stress analysis. 

Unfortunately, in most cases, experimental results are not available at this stage of the 

project, yet an estimation of the elastic modulus of concrete is crucial for predicting thermal 

stresses. To solve this problem you must obtain an estimate of the elastic properties using a 

composite materials formulation that incorporates the elastic moduli and the volume fractions 

of the cement paste and aggregate. 

 

3.1 Composite Models for Predicting Concrete Elastic Modulus 

 

3.1.1 Two phase models 

The two simplest models used to simulate a composite material are shown in Figure (13-1a 

and b). In the first model the phases are arranged in a parallel configuration, imposing a 

condition of uniform strain. This arrangement is often referred to as the Voigt model. In the 

second model, the phases are arranged in a series configuration imposing a condition of 

uniform stress; this geometry is known as the Reuss model. 

We solve the Voigt model by using a simple strength of materials approach. For a first 

approximation, lateral deformations are neglected. The following equations are obtained: 

 

Equilibrium equation                      σA = σ1A1 + σ2A2                                                         (3-1) 

Compatibility equation                   e = e1 = e2                                                                   (3-2) 

Constitutive relationship                σ = Eϵ                                                                          (3-3) 

 

Substituting Eq. (3-3) into (3-1) we obtain: EϵA = E1ϵ1A1 + E2ϵ2A2                               (3-4) 

 

 

 

 

 

 

 

 

 

 

 

Using the compatibility Eq. (3-1), Eq. (3-4) reduces to 

Figure 3.1: Traditional two-phase models for concrete. 
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EA = E1A1 + E2A2 

For composite materials it is more convenient to deal with volume than area, therefore, for 

unit length: 

EV=E1V1+E2V2 

Or 

                                                          E=E1c1+E2c2                                                    (3.5) 

 

where ci = Vi/V is the volume fraction of the ith phase. Using the same approach to solve for 

the series (Reuss) model: 

 

                                                               
 

 
 
  

  
 
  

  
                                                       (3.6) 

 

To obtain further insight into these models, let us re-derive the parallel and series models to 

include lateral deformations. Because the structural models shown in Figure (3-1) do not 

allow the introduction of Poisson’s ratio (ν), let us consider a homogeneous body of volume 

V and bulk modulus K subjected to a uniform hydrostatic compression P. The total stored 

strain energy W is given by 

 

                                                                        
   

  
                                                       (3.7) 

Or 

                                                                        
    

 
                                                     (3.8) 

where                               

                                                          
  

 
  

 

 
                                                   (3.9) 

is the volumetric strain. 

 

The parallel model assumes that each phase undergoes the same strain in the two-phase 

composite.  

 

                                               
      

 
 
      

 
                                 (3.10) 

 

Equating the strain energy in the composite, Equation (3.8), to the equivalent homogenous 

medium, Equation (3.10), leads to the following expression for the effective bulk modulus: 

 

 

                                                                                                              (3.11) 

 

A similar expression can be obtained for the effective shear modulus G. The effective 

modulus of elasticity can be calculated from Equation (3.11) in combination with the 

following relations from the theory of elasticity (or fluid mechanics):  

 

                                     
   

    
   (   )    (    )                         (3.12) 
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Using Equations (3.11) and (3.12), the effective modulus of elasticity for the parallel model 

can be given by 

 

                                          
      (         )

 

(      )(      )(      )
                       (3.13) 

where Kv and Gv refer to the values obtained using the Voigt model. For special case where 

the two phases have the same Poisson’s ratio, Equation (3.13) reduces to Equation (3.5), 

           , which was obtained neglecting deformations. 

The series model assumes that the stress state in each phase will be a uniform hydrostatic 

compression of magnitude P. The total store energy for the composite is given by 
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)                          (3.14) 

The effective bulk modulus can be obtained by equations (3.7) and (3.14): 

                                                               
 

 
 

  

  
 
  

  
                                                       (3.15) 

Using the relationships for elastic modulus given by Equations (3.12), Equations (3.15) can 

be rewritten as 

                                                               
 

 
 
  

  
 
  

  
                                                        (3.16) 

Note that Equation (3.16) is the same as Equation (3.6), which was obtained when we 

neglected lateral deformations. 

Neither the Voigt nor the Reuss models are precise, except in the special case where the 

moduli of the two materials are equal. This is because the equal-stress assumption satisfies 

the stress equations of equilibrium, but, in general, gives rise to displacements that are 

discontinuous at the interface between the two phases. Similarly, the equal-strain assumption 

leads to an admissible strain field, but the resulting stresses are discontinuous.  

Energy considerations from the theory of elasticity, showed that the parallel and series 

assumptions lead to upper and lower bounds on G and K. This result is significant because, 

given the elastic moduli of the phases and their volume fractions, it allows the determination 

of the maximum and minimum allowable value for the concrete elastic moduli. If the 

maximum and minimum values are close, the problem is solved from an engineering point of 

view. When hard inclusions are dispersed in a softer matrix (concrete for instance), the 

maximum and minimum values are far apart, as shown in Figure (3.2). Therefore, it is 

recommended to establish stricter upper and lower bounds, such as the Hashin-Shtrikman 

bounds to be discussed later after a brief review of more elaborate models. 
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Hirsch (1962) proposed a model (Figure 3.1c) that relates the modulus of elasticity of 

concrete to the moduli of the two phases (aggregate and matrix), their volume fractions, and 

an empirical constant, x. 
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)   (

 

    (   )  
)                       (3.17) 

where 

                                                                    
  

  
                                               

For practical application, the value 0.5 for x is often recommended, which gives the 

arithmetic average of the parallel and series moduli. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Hansen (1965) proposed a model (Figure 3.1d) that consists of spherical aggregate located at 

the centre of a spherical mass of matrix. This model was based on a general formulation by 

Hashin (1962), which, for the particular case when the Poisson’s ration of both phases is 

equal to 0.2, yielding 

 

                                                         (
     (    )  

(    )       
)                                            (3.18) 

 

where phase-1 corresponds to the matrix and phase-2 to the aggregate. 

 

 

 

 

 

Figure (3.2): Bounds for Young’s modulus (elastic moduli of the matrix Em = 28.7 GPa, Km = 20.8 GPa 
and elastic moduli of the aggregate: Ea = 86.7 GPa, Ka = 44 GPa) 
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Counto (1964) considered the case (Figure 3-1e) where an aggregate prism is placed at the 

centre of a prism of concrete, both with the same ratio of height to area of cross section. By 

using a simple strength of materials approach, the modulus of elasticity for the concrete can 

be given by 

 

                                                       
 

 
 
  √  

  
 

 

(
  √  

√  
)     

                                       (3.19) 

 

Again, phase 1 corresponds to the matrix and phase 2 to the aggregate. 

 

Example: a typical lean concrete mixture with 75% of aggregate and 25% cement paste by 

volume, for a given age assuming the elastic modulus of cement and aggregate (quartzite) to 

be 20 and 45 GPa, respectively, calculate the composite elastic moduli? 

 

Solution: 

E using Voigt model = 38.8 GPa  

E using Reuss model =  34.3 GPa 

No matter how sophisticated or simple a two-phase model may be, any prediction should lie 

inside these bounds.  

 

Ec using Hirsch model = 36.5 GPa 

Ec using Hansen model = 36.4 GPa 

Ec using Counto model = 36.2 GPa 

 

So for practical purposes, the three models estimate the same elastic modulus for this 

particular example. In these examples it has been relatively simple to estimate the elastic 

modulus. In other cases of estimating elastic moduli may be more problematic.  

 

The models presented so far are limited in computing the effect of voids, cracks, and 

phase changes (such as water to ice during freezing of the cement paste). Another 

shortcoming of these methods is that they do not take into account any of the specific 

geometrical features of the phases or how the pores and aggregate particles interact with one 

another under various loading conditions. As a general rule for two-component materials, the 

effect of the shape of the inclusion is more important when the two components have vastly 

different moduli, but is of minor importance when the two components have roughly equal 

moduli. Hence, we can use models that ignore aggregate shape when trying to estimate the 

moduli of a mixture of cement paste and aggregate. 

 

 

3.1.2 Three phase models 

Nielsen and Monteiro (1993) studied the limitations of two-phase models for concrete and 

proposed that concrete be modelled as a three-phase material consisting of aggregate 

particles, surrounded by a transition zone, embedded in the cement paste matrix.  

Hashin and Monteiro (2002) developed a mathematical model based on the following 

assumption: concrete is a composite consisting of a matrix in which are embedded spherical 
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particles, each of which is surrounded by a concentric spherical shell, which will be called the 

interphase. Matrix, particle, and interphase materials were considered elastic isotropic and 

the entire composite was assumed to be statistically homogeneous and isotropic. First the 

authors considered the classical problem of analytical determination of the effective elastic 

properties of the composite in terms of constituent properties and internal geometry. Then the 

model was used to determine of interphase properties in terms of particle and matrix 

properties and effective properties. 

Using experimental data, their analysis indicated that the shear and Young’s moduli of 

the interphase are about 50 percent of those of the original bulk cement paste, while the bulk 

modulus is on the order of 70 percent of the original bulk cement paste.  

When studying the effect of pores and cracks, sophisticated models are needed that 

explicitly consider the shape of the “inclusions.” Two of the most accurate models available 

for estimating the effect of pores and/or cracks on the elastic moduli are the differential 

scheme and the Mori-Tanaka method. Discussion on the rationale of these methods is beyond 

the scope of this course. For two critical idealized pore shapes, namely, the sphere and the 

“penny-shaped” crack, the results have relatively simple forms which are described below. 

 

If a solid body of modulus E0 and Poisson’s ratio v0 contains a volume fraction c of 

spherical pores, its overall moduli E will be as follows: 

 

                         Differential method:             (   )
                                                (3.20) 

                         Mori-Tanaka method:          (   ) (    )                                 (3.21) 

 

where    (    )(       )  (     ). Parameter α is nearly independent of v0, and 

is approximately equal to 1. 

 

3.1.3 Effect of crack 

Since a small volume fraction of very thin cracks can cause an appreciable degradation of the 

moduli, it is not convenient to quantify their concentration using volume fractions. If the 

body is filled with circular cracks, instead, we use the crack-density parameter Γ, which is 

defined by Γ = Nα
3
/V, where α is the radius of the crack in its plane, and N/V is the number 

of cracks per unit volume. The effective moduli of a body containing a density Γ of circular 

cracks are as follows for the two different models 

 

                         Differential method:              
                                                       (3.22) 

                         Mori-Tanaka method:           (    )                                             (3.23) 

  

where     (      )(    
 )   (    ). For typical values of v0, β is essentially 

equal to 16/9 = 1.78.  

 

More general treatments of the effect of pores on the elastic moduli assume that the pores 

are oblate spheroids of a certain aspect ratio. The sphere (aspect ratio = 1) and the crack 

(aspect ratio = 0) are the two extreme cases. Figure (3-3) shows the elastic moduli as a 

function of porosity, for various pore aspect ratios, as calculated using the Mori-Tanaka 

model. 
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3.2 Hashin-Shtrikman (H-S) Bounds 

Although the Voigt and Reuss models produce an upper and lower bounds for the elastic 

moduli, as shown in Figure (3-2), the bounds are often far apart, in which case they are of 

little use for certain specific cases. For instance, if we assume a volume fraction of 0.6 in 

Figure (3-2), the upper and lower bounds are 63.9 and 47.9 MPa, respectively. The spread is 

large and, therefore, of limited use for engineering applications. Fortunately, Hashin and 

Shtrikman (H-S) developed more stringent bounds for a composite material, which in a 

statistical sense, is both isotropic and homogeneous. The H-S bounds were derived using 

variational principles of the linear theory of elasticity for multiphase materials of arbitrary 

phase geometry. For two-phase composites the expressions take the form: 
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             (3.25) 

 

 

where K and G are the bulk and shear moduli, respectively. Here K2 > K1; G2 > G1. Kup and 

Gup refer to the upper bounds and Klow and Glow to the lower bounds. 

Figure (3-2) shows that the H-S bounds are inside the Voigt-Reuss bounds. Using the 

previous example for a volume fraction of 0.6, the H-S bounds give 58.4 and 54.0 MPa. The 

range is significantly narrower than that obtained using the Voigt-Reuss bounds. 

 

 

Figure (3.3): Effect of porosity and shape of pores on the elastic modulus of a material. 
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3.3 Transport Properties 

This section has concentrated on various methods for estimating elastic modulus; however, 

other important properties can also be predicted using the theorems of composite materials. 

Consider the following relationships that have the same mathematical structure: 

 

 

 

 

 

 

 

 

 

For each of these five transport relationships, the flux vector is related to the driving force 

vector by a second-order physical property tensor, that is, a 3 × 3 matrix (σ, k, ε, μ, D). For 

isotropic materials, the electrical conductivity σ, the thermal conductivity k, the dielectric 

constant ε, the magnetic susceptibility μ, and the diffusion constant D reduce to a single 

constant. 

It should be noted that the elastic moduli is a fourth order tensor and, even for isotropic 

materials, contains two independent constants. Any model that can predict, say, diffusion 

constant D from the individual phases properties, will also be able to predict σ, k, ε, and μ. 

 

Hashin and Shtrikman derived the following bounds for transport constants. For thermal 

conductivity (k2 > k1), in the three-dimensional case we have for the upper bound: 

 

 

 

 

 

 

and for the lower bound: 

 

 

 

 

 

 

 

The number 3 in the denominator should be replaced by 2 and 1 for two-dimensional or one-

dimensional cases, respectively. Similar equations apply for the other transport constants. 

 

 

 

 


