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4. VISCOELASTICITY 

There are two methods used to study the one-dimensional viscoelastic behavior of concrete: 

a) the creep test, where the stress is kept constant and the increase in strain over time is 

recorded, and (b) the relaxation test, where the strain is kept constant and the decrease in 

stress over time is recorded. Experimental results from both creep and relaxation tests are 

shown in Figure (4.1), where the creep response is a function of the duration of loading and 

the age of concrete when the load was applied. The longer the concrete is under load, the 

greater the deformation, and the greater the age of loading, the lower the deformation. This 

behaviour classifies concrete as an aging viscoelastic material. In fact, most of the 

mechanical properties of concrete are age-dependent. The mathematical formulation for 

aging materials is more complex than for non-aging materials; this section presents basic 

expressions for aging materials. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure (4.1): (a) Creep test; (b) relaxation test of concrete. 
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Creep and relaxation experiments are time-consuming, but worthwhile as they yield 

significant information about the viscoelasticity of the material. Contrary to elastic behavior 

where two constants are used to describe a homogeneous isotropic elastic material, for 

viscoelastic behavior an evolution law is necessary to describe how the stress or strain 

changes over time. In this section, rheological models are presented that produce such 

evolution laws, in addition to some practical equations used in design codes. Rheological 

models will be used to provide some insight into the viscoelastic behavior of concrete, 

explaining for instance why the rate of stress decrease in the relaxation test is faster than the 

rate of strain increase in the creep test. Unfortunately, in real concrete structures the state of 

stress or strain is unlikely to be constant over time. To model more complex loading 

conditions, the principle of superposition and integral representations are presented. These 

methods allow to compute the strains if the creep function and stress history are known or to 

compute the stresses if the relaxation function and strain history are known. If no 

experimental data are available (i.e., creep or relaxation test results), the recommendations of 

a code or a model are used: CEB model code 1990, ACI-209, and the Bazant-Panula model.  

 

4.1 Basic Rheological Models 

The behavior of viscoelastic materials can be successfully estimated by the creation of 

rheological models based on two fundamental elements: the linear spring and the linear 

viscous dashpot. For the linear spring the relationship between stress and strain is given by 

Hooke’s law: 

 

                                                            ( )     ( )                                                        (4.1) 

The response of the spring to the stress is immediate. During a creep test, where the stress ζ0 

is kept constant, the stain will be ζ0/E, constant over time. Similarly, for a relaxation test, 

where the strain ε0 is kept constant the stress will be ε0E, constant over time.  

The viscous dashpot can be visualized as a piston displacing a viscous fluid in a cylinder 

with a perforated bottom. Newton’s law of viscosity: 

 

                                                            ̇( )  
 ( )

 
                                                        (4.2) 

where  ̇  
  

  
  the strain rate 

η = the viscosity coefficient  
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Table 4.1 Simple Rheological Models and their Creep and Relaxation Response  
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4.1.1 Maxwell model 

The Maxwell model comprises a linear spring and a linear viscous dashpot connected in 

series, as shown in Table 4.1c. The following equations apply: 

 

Equilibrium equation                               ( )    ( )   ( )                                     (4.3) 

Compatibility equation                           ( )    ( )    ( )                                       (4.4) 

Constitutive relationship (spring)            ( )     ( )                                                 (4.5) 

                                        (dashpot)          ( )     ̇( )                                                  (4.6) 

Differentiating Equations (4.4) and (4.5) with respect to time t and using Equations (4.3) and 

(4.6): 

                                                                ̇( )  
 ̇( )

 
 
 ( )

 
                                              (4.7) 

Note that for a rigid spring (E = ∞), the model reduces to a Newtonian fluid; likewise, if the 

dashpot becomes rigid (η = ∞), the model reduces to a Hookean spring. The response of the 

Maxwell model to various kinds of time-dependent stress or strain patterns can be determined 

by solving Equation (4.7). For instance, consider again a creep test, with the initial conditions 

ζ = ζ0 at t = 0. Integrating Equation (4.7), we obtain: 

 

                                                                ( )  
  

 
 
   

 
                                                  (4.8) 

The model predicts that the strain increases without bounds. This is characteristic of many 

fluids; therefore, a material described by Equation (4.7) is known as a ―Maxwell’’ fluid. 

When the system is unloaded at time t1 the elastic strain ζ0/E in the spring recovers 

instantaneously, while a permanent strain (ζ0/η)t1 remains in the dashpot.  

In a relaxation experiment, where the strain ε0 is constant, the model predicts: 

 

                                                               ( )      
                                                  (4.9) 

The ratio T = η/E is called the relaxation time, and it helps characterize the viscoelastic 

response of the material. A small relaxation time indicates that the relaxation process will be 

fast. In the extreme case of a purely viscous fluid, E = ∞, Equation (4.9) would indicate an 

infinitely fast stress relaxation, T = 0; while for an elastic spring, η = ∞, the stress would not 

relax at all, since T = ∞. 
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4.1.2 Kelvin model 
 

The Kelvin model combines a linear spring and a dashpot in parallel as shown in Table 4-1d. 

The following equations apply: 

Equilibrium equation                                   ( )    ( )    ( )                               (4.10) 

Compatibility equation                                ( )    ( )    ( )                                (4.11) 

Constitutive relationship (spring)                 ( )     ( )                                          (4.12) 

                                        (dashpot)               ( )     ̇( )                                           (4.13) 

Resulting in the differential equation           ( )    ( )     ̇( )                           (4.14) 

Note that the model reduces to a Hookean spring if η = 0, and to a Newtonian fluid if E = 0. 

Equation (4.14) may be used to predict strain if the stress history is given or to predict stress 

if the strain history is given. For instance, for the creep experiment, integrating Eq. (4.14) 

with the boundary condition ζ = ζ0 at t = 0 yields: 

                                                               ( )  
  

 
  (   

     )                               (4.15) 

In Eq. (4.15), the strain increases at a decreasing rate and has an asymptotic value of ζ0/E, as 

shown in Table 4-1d. During the creep test the stress is initially carried by the dashpot and, as 

time goes by, the stress is transferred to the spring. Analogous to the relaxation time, we 

define the retardation time as θ = η/E. A small retardation time indicates that the creep 

process will be fast. In the extreme case of an elastic spring (η = 0), the final strains would be 

obtained instantaneously since θ = 0. 

The Kelvin model requires an infinite stress to produce the instantaneous strain necessary 

for the relaxation test, which makes it physically impossible to perform. 

The Maxwell and Kelvin models have significant limitations in representing the 

behaviour of most viscoelastic materials. As discussed before, the Maxwell model shows a 

constant strain rate under constant stress, which may be adequate for fluids, but not for solids. 

The Kelvin model cannot predict a time-dependent relaxation and does not show a permanent 

deformation upon unloading. 

 

4.1.3 Standard solid model 

A more complex, representative model is the standard solid model, where a spring is 

connected in series with a Kelvin element as shown in Table 4-1e. Assuming ε1 and ε2 to be 

the strain in the spring and Kelvin elements, respectively, the total strain, for the standard 

solid, is given by 

                                                                                                                             (4.16) 
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Since the stress in the spring and the Kelvin element is the same, the stress can be determined 

using Eq. (4-14): 

                                                          ( )      ( )   
   ( )

  
                                  (4.17) 

where      is a differential operator that may be handled as an algebraic entitiy, 

                                                          ( )    ( ) .    
 

  
/                                   (4.18) 

leading to  

                                                           ( )  
 ( )

.    
 

  
/
                                                    (4.19) 

Therefore, we can obtain the strain for the standard solid by using Eq. (4.16) 

                                                          ( )  
 ( )

(  )
 

 ( )

.    
 

  
/
                                          (4.20) 

or 

                                     ( ) .    
 

  
/     ( )   ( ) .    

 

  
/              (4.21) 

Which leads to the differential equation 

 

                                       ̇( )       ( )    ̇( )  (     ) ( )                (4.22) 

 

Equation (4.22) can be integrated for an arbitrary stress history, 

 

                                              ( )  
 ( )

(  )
 
 

 
∫  ( )
 

 
    (   )                             (4.23) 

 

For the particular case of the creep experiment, Equaiton (4.23) reduces to 

 

                                                      ( )  
  

  
 
  

  
[         ]                                  (4.24) 
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Which can be rewritten as  

 

                                              ( )    .
     

    
 

 

  
       /                                   (4.25) 

Equation (4.25) indicates that the strain is proportional to ζ0, changing from ζ0 /E1 at t = 0 to 

ζ0/E∞ at t = ∞. E∞ is called the asymptotic modulus and is given by 

                                                         
     

    
                                                      (4.26) 

During the creep test, the elastic modulus of the standard solid model, Ec(t), reduces from the 

inital value E1 to its asympototic value E∞, according to the following law: 

 

                                      
 

  ( )
 
 ( )

  
 
     

    
 

 

  
                                          (4.27) 

 

We now integrate Equation (4.22) for an arbitrary strain histroy 

 

                       ( )   ( )   (     ) ∫  
 (     )(   )   ̇( )  

 

 
              (4.28) 

 

In the particular case of relaxation experiment the stress evolution is given by 

 

                                    ( )    [   (     ) 
 (     )   ]                           (4.29) 

Equation (4.29) indicates that the stress is proportional to ε0 changing from E1 ε0 at t = 0, up 

to E∞ ε0 at t = ∞. Therefore, during the relaxation test the elastic modulus Er(t), reduces from 

the initial value E1, to its asymptotic value E∞, according to the following law: 

 

                                      ( )  [   (     ) 
 (     )   ]                            (4.30) 
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Even though both creep and relaxation may be understood as a decrease in elastic modulus 

over time from E1 to its asymptotic value E∞, Equations (4.25) and (4.28) have different rates 

of decrease. In a relaxation test, the decrease in the elastic modulus occurs at significantly 

faster rate than in the creep test. As an example, let us take the following values for concrete: 

E1 = 35 GPa, E2 = 18 GPa, T(E2/η) = 1/300 days. Figure (4.2) illustrates the faster reduction 

of elastic modulus during relaxation than for the creep test. 

 

 

 

 

 

 

 

 

 

 

 

 

Example 4.1 

The testing of materials is usually performed either by controlling the stress or strain rate. 

Study the response of a standard solid model loaded under these conditions. Solve the 

problem analytically and then expand the discussion for instantaneous, slow, and medium 

stress and strain rates; assume the following properties for the standard solid: E1 = 35 GPa,  

E2 = 18, GPa, T = 1 min. 

(A) Test with a constant stress rate (v): The stress increases linearly with time, according to 

                                                       ( )                                                              (4.31) 

The strain in the standard solid model is obtained by combining Eqs. (4.23) and (4.31) 

 

                                              ( )  
  

  
 
 

 
∫  
 

 
    (   )                                       (4.32) 

which leads to  

Figure (4.2): Decrease of elastic modulus for relaxation and creep. 
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                                                  ( )  
  

  
 
  

  
 (   

      )                                   (4.33) 

Figure (4.3) presents the stress (Eq. 4.31) as a function of strain (Eq. 4.33) using the given 

material properties, showing that the stress-strain diagram is strongly influenced by the rate 

of loading. Note that the stress-strain diagram may be nonlinear, a common feature for 

viscoelastic materials where the strain at a given time is influenced by the entire stress 

history. This phenomenon will be presented in more detail in the following sections. 

 

 

 

 

 

 

 

 

 

 

 

The stress-strain relationships shown in Figure (4.3) are bounded by very slow and very fast 

rates. The latter gives the upper bound and physically corresponds to the linear spring (E1) 

absorbing all the stress, as the Kelvin element has no time to deform. For very slow rates, the 

standard solid model responds with the asymptotic modulus E∞, and physically corresponds 

to the linear spring E1 in series with the spring from the Kelvin element E2 the dashpot does 

not contribute to the stiffness of the system. 

 

 

(B) Test with constant strain rate: The strain increases with time, according to 

 

                                                       ( )                                                              (4.34) 

 

 

The stress in the model is obtained by combining Eqs. (4.28) and (4.34), 

 

                            ( )       (     ) ∫   
 (     )(   )    

 

 
                   (4.35) 

 

which leads to 

 

Figure (4.3): Effect of stress rate on the stress-strain diagram. 
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                          ( )       (     ) 
 

(     )
(    (     )   )            (4.36) 

Figure (4.4) shows the stress (Eq. 4.36) in function of strain (Eq. 4.34) with the specified 

concrete properties. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example 4.2 

Study the response of a viscoelastic material subjected to a cyclic strain ε (t) = ε0 cos wt, 

where ε0 is the strain amplitude and w the frequency. Write explicit equations for the 

Maxwell and Kelvin models. 

 

For a linear elastic spring, the stress will be in phase with the cyclic strain that is 

 

                                            ( )    ( )                                                (4.37) 

For a Newtonian fluid the stress will lead the strain by π/2: 

 

                    ( )    ̇( )                    (    )                   (4.38) 

where  

                                                          
 

 
                                                                (4.39) 

For a viscoelastic material the phase difference between stress and strain ranges from 0 to   

π/2. A convenient way of representing oscillatory strain is by using the expression: 

 

 

 

Figure (4.4): Effect of strain rate on the stress-strain diagram. 
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                                                                                                       (4.40) 

Taking the real part of the expression, the strain equation can be rewritten as 

 

                                                     ( )      
                                                       (4.41) 

The stress oscillates with the same frequency w, but leads the strain by a phase angle δ where 

 

                                                  ( )      
 (    )                                               (4.42) 

which can be rewritten as  

 

                                           ( )      
                                                   (4.43) 

where    is the complex stress amplitude given by 

                                             
      (          )                               (4.44) 

A complex mosdulus    can be defined as 

                                      
  

   
 
   (          )

   
                                    (4.45) 

where E1, the storage modulus, is in phase with the strain, and is given by 

                                                         
   

   
                                                       (4.46) 

E2, the loss modulus, is the imaginary part, and is given by 

                                                         
   

   
                                                       (4.47) 

and the magnitude of the complex modulus is given by 

                                                  |  |  √  
    

                                                 (4.48) 

It should be noted that  

                                                            
   

   
                                                       (4.49) 

Represents the mathematical lose per cycle of strain 
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For the Maxwell model: The constitutive equation of the Maxwell model is given by 

Equation (4.7) 

 

                                                                   
 

 
 ̇    ̇                                                  (4.50) 

Using Eqs. (4.41) and (4.43) we obtain 

                                                        
  .    

 

 
/                                            (4.51) 

or 

                                                        .    
 

 
/                                                 (4.52) 

Therefore, the complex modulus can be expressed by 

                                                               
  

  
 

   

  
   

 

                                                 (4.53) 

Separating the real and imaginary parts we find 

                                                  
      

         
  

  

         
                                     (4.54) 

Hence the magnitude of the complex modulus is given by 

                                                   |  |    .  
    

  
/
 
 

 
                                           (4.55) 

and  

                                                             
  

  
 

 

  
                                                      (4.56) 

 

Taking the material constants from the previous example, the magnitude of complex modulus 

can be plotted against the angular frequency, as shown in Figure (4.5). Note that for very high 

frequencies the dynamic modulus approaches the spring constant E and for the low 

frequencies the dynamic modulus approaches zero. 
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For the Kelvin model: The constitutive equation for the Kelvin model is given by Eq. (4.14) 

                                                        ( )    ( )     ̇( )                                         (4.57) 

Using Eqs. (4.42) and (4.57) we obtain 

 

                                                     
      (     )                                         (4.58) 

 

Therefore, the complex modulus is expressed by 

 

                                                               
  

  
                                                 (4.59) 

And the magnitude of the complex modulus by 

 

                                                         |  |  (       )
 

                                            (4.60) 

The mechanical loss for the model is 

                                                                     
 

 
                                                       (4.61) 

Again, if we take the material constants from the previous example, the results for the Kelvin 

model can be plotted, as shown in Figure (4.5). Note that for low frequencies the dynamic 

modulus is given by the spring constant E, while for high frequencies the stiffness increases. 

The significantly different responses for the Maxwell and Kelvin models under 

oscillatory stress points to the advantage of performing such a test to assess which model is 

most representative for a specific material. 

Figure (4.5): Complex elastic modulus in function of frequency. 
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4.2 Generalized Rheological Models 

 

The modelling of viscoelastic behaviour can be improved by combining a large number of 

springs and dashpots in series or in parallel. By adding many elements, several relaxation 

times can be obtained, which is characteristic of complex materials such as concrete. 

When generalizing the Maxwell model, we must choose to connect the units either in 

series or in parallel. Let us start by studying the response when the units are connected in 

series, as shown in Figure (4.6).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The constitutive equation has the form: 

 

                                                ̇( )   ̇( )∑
 

  

 
     ( )∑

 

  

 
                                (4.62) 

where n is the number of elements. Because the equation is equivalent to Eq. (4.7), the chain 

of elements is identical to a single Maxwell element, as shown in Figure (4.6b), therefore not 

much was accomplished by connecting the units in series. 

Figure (4.6): Generalized Maxwell model in series. 
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Let us now analyze the response when the units are connected in parallel, as shown in Figure 

(4.7b). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

The strain in each unit of a generalized Maxwell model in parallel is given by 

 

 

                                                   
 

  
  ( )  {

 

  

 

  
 
 

  
}  ( )                                            (4.63) 

The stress for the generalized model is given by 

 

 

                                                    ( )  {∑  
    

 

  

 

  
 
 

  

 
   }  ( )                                        (4.64) 

and the relaxation function for the generalized Maxwell model is  

                                             (   )  ∑   
 
   *    (   )   +                       (4.65) 

Figure (4.7): (a) Generalized Kelvin model in series and (b) generalized Maxwell model in parallel. 
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indicating that the response of the material depends on a distribution of relaxation times. This 

formulation is useful in modelling complex viscoelastic materials.  

When generalizing the Kelvin model the same question arises: should we connect the 

units in series or parallel? We start with the units connected in parallel, as shown in Figure 

(4.8).  

 

 
 

 

 

The constitutive equation for the model has the form 

 

 

                                               ( )   ( )∑   
 
     ̇( )∑   

 
                                (4.66) 

 

Which has the same form as a Kelvin element shown in Figure (4.8). 

 

Consider a generalized Kelvin model in series as shown in Figure (4.7a). The stress in each 

unit is given by 

 

                                                     ( )  {     
 

  
}   ( )                                          (4.67) 

The strain for the generalized model is given by 

 

                                                  ( )  ∑ {
 

     
 

  

} 
    ( )                                         (4.68) 

Equations (4.63) and (4.68) are differential equations of the general form  

                                                 ∑    
   

   
 
    ∑   

   

   
 
                                              (4.69) 

Figure (4.8): Generalized Kelvin model in Parallel 
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The specific creep function for the generalized Kelvin model in series is 

 

 

                                       (   )  ∑
 

  

 
   *     (    )   +                       (4.70) 

In order to model the material’s response adequately, the spring constants Ei and the 

dashpot constants ηi should vary over a large range. Sometimes when modelling a fluid or a 

solid, it is convenient to take some limiting value for the spring or dashpot constant. It should 

be noted that a Maxwell model with infinite spring constant or a Kelvin model with zero 

spring constant becomes a dashpot. Conversely a Maxwell model with infinite viscosity or a 

Kelvin model with zero viscosity results in a spring. 

 

 

4.3 Time-Variable Rheological Models 
 

Concrete changes its mechanical properties with time due to hydration reaction. In the models 

presented so far, however, the elastic modulus E and the viscosity coefficient η are constant 

over time. Consequently they have limited success in modelling the complex response of 

concrete. To include aging of concrete, we will now study how the differential equations for 

the basic elements—the spring and dashpot—change when their mechanical properties 

change with time. 

Consider a linear spring with elastic modulus varying in time. Hooke’s law can be 

expressed in two forms: 

 

                                                          ( )   ( ) ( )                                                   (4.71) 

and 

                                                          ̇( )   ( ) ̇( )                                                   (4.72) 

The equations are not equivalent. Solid mechanics literature defines a body following Eq. 

(4.71) to be elastic, whereas a body following Eq. (4.72) to be hypoelastic. 

 

A linear viscous dashpot with viscosity coefficient varying in time is expressed 

unequivocally by 

 

                                                          ( )   ( ) ̇( )                                                   (4.73) 

If we reconstruct the previous models (Maxwell, Kelvin, standard-solid, generalized) for 

aging materials such as concrete, the equations for a Maxwell element with a hypoelastic 

spring or with an elastic spring are given by 

 

                                                          ̇( )  
 ̇( )

 ( )
 
 ( )

 ( )
                                                  (4.74) 

 

                                             ̇( )  
 ̇( )

 ( )
 {

 

 ( )
 

 

  

 

 ( )
}  ( )                                 (4.75) 

 

 



 P
ag

e1
8

 

Note that Eqs. (4.74) and (4.75) may be expressed as 

 

                                            ̇( )    ( ) ̇( )    ( )  ( )                                       (4.76) 

 

where q0(t), q1(t) are independent functions of time. Equation (4.76) represents the 

constitutive law for the Maxwell model with either elastic or hypoelastic spring. 

 

Dischinger (1987) used the aging Maxwell element, Eq. (4.74), to derive the so-called 

rate-of-creep method. The specific creep function Φ(t,η), that is the strain per unit stress at 

time t for the stress applied at age η, is given by 

 

                                                    (   )  
 

 ( )
 ∫

  ́

 ( ́)

 

 
                                              (4.77) 

The creep coefficient Φ(t,η) representing the ratio between the creep strain and the initial 

elastic deformation is  

 

                                                    (   )   ( ) ∫
  ́

 ( ́)

 

 
                                              (4.78) 

Equation (4.74) can be expressed in function of the creep coefficient as 

                                                       
  

  
 

 

 ( )

  

  
 

 

 ( )
                                                 (4.79) 

The Dischinger formulation implies that the creep curves are parallel for all ages. 

Experimental results do not indicate that the assumption is valid, as evident in Figure (4.1a), 

where the creep curves are not parallel. Usually this method substantially underestimates the 

creep for stresses applied at ages greater than η. 

A Kelvin element with an elastic spring is described by 

                                            ( )   ( ) ( )   ( )  ̇( )                                        (4.80) 

and for hypoelastic spring by 

                                     ̇( )  , ( )   ̇( )- ̇( )   ( ) ̈( )                               (4.81) 

Equations (4.80) and (4.81) are not equivalent. 
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Let us now consider the standard solid. Previously for non-aging materials, we solved the 

model for the Kelvin element in series with a spring. The same differential equation would 

have been obtained for a Maxwell element in parallel with a spring. For aging materials, the 

number of combinations for the standard solid greatly increases, as indicated in Table 4.2. 

with the notation: 

        E = elastic spring 

       H = hypoelastic spring 

Ke , Kh = Kelvin element with elastic and hypoelastic spring, respectively 

       M = Maxwell element (Note Eq. 4.76 satisfies both springs) 

    −, // = series and parallel configurations, respectively. 

 

Table 4.2 

 

 

 

 

 

 

 

As an example, let us solve case (a) which was previously analyzed for a non-aging material. 

In this model we have an elastic spring with an elastic modulus E1(t) in series with a Kelvin 

model with an elastic modulus E2(t) and a dashpot of viscosity η(t). Let ε1 and ε2 denote the 

strains of the spring and of the Kelvin element, respectively. Therefore, 

 

                               ( )    ( )    ( )           ( )   ( )   ( )                        (4.82) 

                                              ( )  ( )   ( )  ̇( )   ( )                                     (4.83) 

Eliminating ε1 and, ε2 we obtain: 

 

              ( ) ( )   ( ) ̇( )  .  
  ( )

  ( )
  

 

  

 

  ( )
/  ( )  

 ( )

  ( )
 ̇( )       (4.84) 

 

These aging models can be generalized to obtain the following differential constitutive 

equation: 

 

                                  
  

   
   ( )

    

     
     ( )                                      

(4.85) 

                              ( )  (  ( )
  

   
   ( )

    

     
     ( )) ( ) 

 

It should be mentioned that models having two or more Maxwell elements in parallel or 

Kelvin elements in series will not, in general, lead to a differential equation, but rather to an 

integro-differential equation. 
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4.4 Superposition Principle and Integral Representation 
 

In the lifetime of a concrete structure it is unlikely that the load will be kept constant as in a 

creep test nor will the strain be kept constant, as in a relaxation test.  

In order to estimate the strain at a given time from a known stress history further 

assumptions are necessary. McHenry (1943) made a significant contribution by postulating 

the following Principle of Superposition: ―The strains produced in concrete at any time t by a 

stress increment at any time t0 are independent of the effects of any stress applied either 

earlier or later than t0. The stresses that approach the ultimate strength are excluded.‖ 

 

Note: Experimental results indicate that the principle of superposition works well for 

sealed concrete specimens, that are for basic creep. When creep is associated with drying 

shrinkage other methods should be used. 

 

The principle of superposition may also be formulated as follows ―the effect of sum of 

causes is equal to sum of effects of each of these causes.‖ Consider ε1(t) and ε2(t), the strains 

resulting from the stress history ζ1(t) and ζ2(t), respectively. For a linear viscoelastic material 

we simply add the two stress histories 

 

                                                     ( )    ( )    ( )                                              (4.86) 

Using the principal of superposition, the following strain history is obtained: 

 

                                                     ( )    ( )    ( )                                                (4.87) 

Next, by using the principal of superposition and a known creep function, we can determine 

at any time the strain for a given stress history. For a creep test we may write the strain ε(t)  

as a function of the stress ζ0, time t, and age of loading η, 

                                                       ( )   (      )                                                    (4.88) 

In the linear range Eq. (4.88) may be written as 

                                                        ( )      (   )                                                    (4.89) 

where Φ(t,η)  is the specific creep function. 

Figure (4.9) shows an arbitrary stress changing with time. Breaking the stress history up into 

small intervals, we have 

                                         ( )  ∑   (  )
 
                                                        (4.90) 

Using Eq. (4.89), the strain history is given by 

  

                                                 ( )  ∑   (  ) (   )
 
                                             (4.91) 
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and in the limit 

 

                                                 ( )  ∫  (   )   ( )
 

  
                                          (4.92) 

Equation (4.92) is often referred to as the hereditary or Volterra integral. It shows that at time 

t the strain ε(t) not only depends on the stress ζ(t) but rather on the whole stress history. 

Integrating Equation (4.92) by parts we obtain 

 

                                          ( )  
 ( )

 ( )
 ∫  ( )

  (   )

  
   

 

  
                                     (4.93) 

where  ( )     (   ) 
 

Our next objective is to compute the stress for a given strain history and relaxation function 

E(t,η). Equations analogous to Eqs. (4.91) and (4.92) can be formulated. 

 

                                                 ( )  ∫  (   )  ̇( )  
 

  
                                           (4.94) 

 

                                        ( )   ( ) ( )  ∫  ( )
  (   )

  
   

 

  
                              (4.95) 

where  ( )   (   ). 
 

 

 

 

 

 

 

Figure (4.9): Incremental application of load over time. 
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4.5 Mathematical Expressions for Creep 
 

As we mentioned before, creep tests are time-consuming and special care needs to be taken to 

select a creep function that best fits the experimental results. In addition, the relatively short 

(time-wise) creep experiments, the selected creep function also must predict the long-term 

deformation. Previously, the curve fitting was done manually; researchers had to use intuition 

and experience to select simple and well-behaved functions. Today, because curve-fitting can 

be performed on almost any personal computer, the number and degree of sophistication of 

the functions has increased significantly. Before presenting some functions for creep of 

concrete commonly used in structural analysis, we will make the following general 

statements regarding the specific creep function Φ(t,η). Consider it as a guideline in case you 

feel the need to introduce a new creep function! 

 

1. For a given age of loading η, the creep function is a monotonic increasing function of time 

t; 

 

                                                                 
  (   )

  
                                                            (4.96) 

2. However, the rate of creep increment is always negative;  

 

 

                                                                 
   (   )

   
                                                          (4.97) 

3. The aging of concrete causes a decrease in creep as the age of loading τ increases. For a 

given value of load duration (t – τ) due to aging of concrete; 

 

                                                               .
  (   )

   
/
(   )

                                                  (4.98) 

4. Creep has an asymptotic value 

                                                                   (   )                                                (4.99) 

In many structural models, the function Φ(t, τ) is separated into instantaneous and delayed 

components. 

                               

                                                         (   )  
 

 ( )
  (   )                                        (4.100) 

if we take aging of the concrete into account, the specific creep function C(t, η) is further 

separated into: 

 

                                                       (   )   ( )   (   )                                        (4.101) 

By writing C(t, η ) in this fashion, we indicate that at a given time concrete should recall not 

only the actions to which it was subjected since time t, given by the function  f(t – η), but also 

its own material state at time t, given by the function F(η). Therefore, function F(η) 

characterizes the aging of concrete. The following expressions for F(η ) and f(t – η) have been 

traditionally used for fitting short term experimental data, with the objective of predicting the 

long-term deformation. 
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Expressions for f(t – τ) 
 

1. Logarithmic expression: The U.S. Bureau of Reclamation (1956) proposed using the 

following logarithmic expression for its projects dealing with mass concrete. When the 

stress-strength ratio does not exceed 0.40 the following equation is used: 

 

                                                  (   )        ,  (   )-                                (4.102) 

Constants a and b are easily obtained when the creep data are plotted semi-logarithmically. 

The equation was originally developed for modelling basic creep of large dams, and the 

duration of load (t – η) is measured in days. The expression is unbounded and usually 

overestimates the later creep. 

 

2. Power expression: The general expression is given by  

                                                           (   )   (   )                                           (4.103) 

Constants a and m can be easily obtained on a log-log plot, where the power expression gives 

a straight line. The expression captures the early creep well but overestimates the later creep 

with unbounded results. 

 

3. Hyperbolic expression: Ross(1937) proposed the following hyperbolic expression: 

                                                            (   )  
(   )

   (   )
                                             (4.104) 

This expression provides a limiting value for creep, 1/b. It usually underestimates early creep 

but provides good agreement for late creep. ACI code uses this formulation for creep 

evolution. 

 

4. Exponential expression: The exponential expression provides a limiting value for creep. 

In its simplest formulation it is given by 

 

                                                    (   )   (     (   ))                                       (4.105) 

It does not provide a good fit for experimental values. For numerical analysis more terms are 

usually incorporated. 

 

Expressions for F(τ)  

F(η) takes into account the aging of concrete, therefore it should be monotonically decreasing. 

While expressions for f(t – η) have been developed during the last 70 years, expressions for 

F(η) are much more recent. Among the expressions, we cite: 
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1. Power law: 

 

                                                             ( )                                                         (4.106) 

 

2. Exponential: 

 

                                                             ( )                                                        (4.107) 

 

4.6 Methods for Predicting Creep 

When experimental data are not available, the designer relies on a relevant code, which 

usually represents the consensus among researchers and practitioners. This section presents 

the 90 CEB-FIP model as well as the recommendations of ACI-209 and the Bazant-Panula 

model. 

The creep function Φ(t, t0) that represents the strain at time t for a constant unit stress 

acting from time t0 (t0 = η = the age of loading) is given by 

 

                                         (    )  
 (    )

  
 

 

  (  )
  (    )                                   (4.108) 

In the prediction models two types of creep coefficient exists: 

 

1. The creep coefficient representing the ratio between creep strain at time t and initial strain 

at time t0. This definition is used in the ACI and Bazant-Panula models 

  

                                                       (    )  
  (    )

     (  )
                                                (4.109) 

Therefore Eq. (4.106) may be written as  

 

                                             (    )  
 

  (  )
,   (    )-                                      (4.110) 

2. The creep coefficient representing the ratio between the creep strain at time t and the initial 

strain for a stress applied at 28 days. 

 

                                                         (    )  
  (    )

       
                                                (4.111) 

Therefore Equation (4.108) may be written as 

 

                                                  (    )  
 

  (  )
 
   (    )

    
                                        (4.112) 
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CEB 1990: This method estimates creep and shrinkage for structural concretes in the range 

of 12 to 80 MPa in the linear domain, that is, for compressive stresses ζc(t0) not exceeding  

0.4 fcm(t0) at the age of loading t0. Here the total strain at time t, εc(t) may be subdivided into 

 

                        ( )=    ( )    ( )    ( )    ( )     ( )    ( )                  (4.113) 

where εcσ(t) = εci(t) + εcc(t) 

          εcn(t) = εcs(t) + εcT (t ) 

         εci(t0) = initial strain at loading 

          εcc(t) = creep strain 

          εcs(t) = shrinkage strain 

         εcT (t) = thermal strain 

         εcs (t) = stress dependent strain 

          εcn(t) = stress independent strain 

 

The creep strain εcc(t, t0) is given by 

 

                                                       (    )  
  (  )

  
 (    )                                           (4.114) 

where θ(t, t0) = creep coefficient 

                Ec = 28-day modulus of elasticity 

 

Table 4.3 indicates the parameters necessary to compute the creep coefficient  

 

where t and t0 = measured in days 

                    t1 = 1 Day 

                  fcm = 28-day compressive strength, in MPa 

                 fcmo = 10 MPa 

                 RH = percent relative humidity 

                   Ac = cross section of the member 

                     u = perimeter of the member in contact with the atmosphere 

 

Table 4.3 
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The development of creep with time βc is hyperbolic, therefore giving an asymptotic value of 

strain as t → ∞. The effect of type of cement may be considered by modifying the age of 

loading to, as 

 

 

                                                 (
 

      
     )

 

                                              (4.115) 

                                     ∑    
 
       .

    

     (   )   
      /                              (4.116) 

 

where α = -1.0 for slow hardening cements, 0.0 for normal or rapid hardening cements, 1.0 

for rapid hardening, high-strength cement 

    T(Δti) = temperature, in C, during the time period of Δti 

         Δti = number of days with temperature T 

          T0 = 1°C 

 

 

4.7 Methods for Predicting Shrinkage 

The total shrinkage εcs(t, ts) can be computed from the equations shown in Table 4.4, 

 

 

Table 4.4 
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ACI 209: The creep coefficient θ(t, t0) is defined as 

                                                       
(    )

   

   (    )
   
 (    )                                          (4.117) 

where (t,t0) = time since application of load 

θ(∞, t0) = ultimate creep coefficient given by 

 

                                                  (    )                                                      (4.118) 

At loading ages greater than 7 days for moist cured concrete and greater than 1-3 days for 

steam cured concrete 

 

         
                     for moist cured concrete 

         
                     for steam cured concrete 

Coefficients k4, k5, and k6 are all related to the concrete composition 

                               s = slump of concrete (mm) 

                                f = ratio of fine to total aggregate by weight in percent 

                                  a = air content(percent) ≥1.0. 

k2, the humidity coefficient is given by 

                               (RH > 40%) 

where RH is the relative humidity in percent. 

 

The member thickness coefficient k3 can be computed by two methods: 

1. Average-thickness method for average thickness less than 150 mm: 

                             for (t - t0) < 1 year  

                             for (t - t0) > 1 year  

where h is the average thickness in mm. 

 

2. Volume-surface ratio method: 
 

   
 

 
,          (          )-               

where V/S is the volume-surface ratio (mm). 
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Bazant-Panula method: This model separates total creep into basic and drying creep. The 

basic creep function is given by 

 

                 (    )  
 

  
   (    )  

 

  
 
  

  
(  
    )(    )

                 (4.119) 

E0, asymptotic modulus, is a material parameter. It is not an actual elastic modulus for any 

load duration. 

 

The five materials parameters of Eq. (4.119) are given by the following relations: 

 

 

  
      

     

     
                

              
                    

 

     
  

                    
   

 

where fcm28 is in ksi and 1/E0 is in 10
-6

 per psi. 

 

The only input is the 28 day mean cylinder strength. In the refined formulation, the 

material parameters are corrected both to the strength fcm28 and to several composition 

parameters. 

 

Equation (4.119) also computes the static and dynamic modulus. The load duration (t – 

t0) for the static modulus is approximately 0.1 days, and for the dynamic modulus, 10
–7

 days. 

 

The total creep function is given by 

 

                                         (    )    (    )  
   (       )

  
                                     (4.120) 

 

The drying creep coefficient θ(t, t0, ts) is given by a series of equations relating concrete 

composition, thickness of the member, and environmental conditions. 

 

 


