3.6.3 Bandwidth of an FM Signal

The bandwidth of an FM signal could be calculated as:

$$
B_{F M}=2 n B_{m}
$$

where $n=$ maximum number of significant sidebands,

$$
B_{m}=\text { the bandwidth of the baseband signal. }
$$

3.6.4 Power in FM

For sinusoidal input signal, the FM formula is $y(t)=A_{c} \cos \left(\omega_{c} t+\beta \sin \left(\omega_{m} t\right)\right)$
Mean square power of each sideband of an FM signal: $P_{n}=\frac{A_{c}^{2}}{2 R} J_{n}^{2}(\beta)$
Mean square power of an unmodulated FM carrier is: $P_{c}=\frac{A_{c}^{2}}{2 R}=P_{\text {Total }}$
Mean square power of total FM signal power is that delivered to the load:

$$
P_{L}=\sum_{n} P_{n}=P_{c}\left\{J_{0}^{2}+2\left(J_{1}^{2}+J_{2}^{2}+J_{3}^{2}+J_{4}^{2}+\cdots\right)\right\}
$$

when $n \rightarrow \infty$ (i.e. All sidebands are included), $P_{L} \approx P_{c} \equiv P_{\text {Total }}$

Solve Examples

