1.6.5 Signal to Quantization Noise Ratio

It is important to consider the quantization noise in the overall system quality. To calculate $\mathrm{SN}_{\mathrm{q}} \mathrm{R}$ of a uniformly quantized signal, it is suitable to make the following assumptions:
(1) Linear quantization (i.e. equal increments between quantization levels).
(2) Zero mean signal (i.e. symmetrical PDF around the 0 Volt).
(3) Uniform signal PDF (i.e. all signal levels equally likely).

(a) Analogue and quantised signals $\left(g(t)\right.$ and $g_{q}(t)$ respectively)

(b) Quantised minus analogue signal, $\varepsilon_{q}(t)=g_{q}(t)-g(f)$

Let: L be the number of the levels of the quantizer, l be the number of bits per a PCM word $\left(L=2^{l}\right)$, and V_{p} be the peak design level of the quantizer. The quantization interval q becomes: $q=\frac{2 V_{p}}{L-1}$

The PDF of the allowed levels is given by:
$p(v)=\sum_{\substack{k=-L \\ k=\text { odd }}}^{L} \frac{1}{L} \delta\left(v-\frac{q k}{2}\right)$
The mean square signal after quantization is:

$$
\begin{aligned}
\overline{v^{2}} & =\int_{-\infty}^{\infty} v^{2} p(v) d v=\frac{2}{L}\left[\int_{0}^{\infty} v^{2} \delta\left(v-\frac{q}{2}\right) d v+\int_{0}^{\infty} v^{2} \delta\left(v-\frac{3 q}{2}\right) d v+\cdots\right] \\
& =\frac{2}{L}\left(\frac{q}{2}\right)^{2}\left[1^{2}+3^{2}+5^{2}+\cdots+(L-1)^{2}\right]=\frac{2}{L}\left(\frac{q}{2}\right)^{2}\left[\frac{L(L-1)(L+1)}{6}\right] \\
\therefore & \overline{v^{2}}=\frac{q^{2}}{12}\left(L^{2}-1\right)
\end{aligned}
$$

Denoting the quantization error (i.e. the difference between the unquantized and quantized signals) as ε_{q}, then the PDF of ε_{q} is uniform:
$p\left(\varepsilon_{q}\right)=\left\{\begin{array}{cc}\frac{1}{q} & -\frac{q}{2} \leq \varepsilon_{q}<\frac{q}{2} \\ 0 & \text { elsewhere }\end{array}\right.$
The mean square quantization error (noise) is:
$\overline{\varepsilon_{q}^{2}}=\int_{-q / 2}^{q / 2} \varepsilon_{q}^{2} p\left(\varepsilon_{q}\right) d \varepsilon_{q}=\frac{q^{2}}{12}$
Therefore, the average $\mathrm{SN}_{\mathrm{q}} \mathrm{R}$ will be:
$\mathrm{SN}_{\mathrm{q}} \mathrm{R}=\overline{v^{2}} / \overline{\varepsilon_{q}^{2}}=L^{2}-1$
Since the peak signal level is $\frac{q L}{2}$ Volts then the peak $\mathrm{SN}_{\mathrm{q}} \mathrm{R}$ will be:
$\mathrm{SN}_{\mathrm{q}} \mathrm{R}=\frac{(L q / 2)^{2}}{\overline{\varepsilon_{q}^{2}}}=3 L^{2}$
We may express it in decibels as $\mathrm{SN}_{\mathrm{q}} \mathrm{R}=6.02 l+\alpha$
Where $\alpha=4.77$ for the peak $\mathrm{SN}_{\mathrm{q}} \mathrm{R}$, and $\alpha=0$ for the average $\mathrm{SN}_{\mathrm{q}} \mathrm{R}$. This equation is called the $6 d B$ rule, and it points out that: an additional 6 dB improvement in the $\mathrm{SN}_{\mathrm{q}} \mathrm{R}$ is obtained for each bit added to the PCM word.

1.6.6 PCM Multiplexing

The output PCM signal rate $R_{T D M}=N R_{b}=N l f_{s}$ (in bps) where: $N=$ number of multiplexed signals, $l=$ number of bits per sample and $f_{s}=$ sampling frequency.

What is the difference between Information Rate and Baud Rate?

