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1.10 CHANNEL CAPACITY 

For any communication system, it is required to send data as fast as possible. But in the 

presence of noise and distortion along the channel, it is very hard to avoid errors at the 

reception. The Shannon–Hartley theorem of channel capacity states that: the maximum rate of 

information transmission 𝑅max over a channel of the bandwidth B and the received signal to 

ratio SNR is given by: 

𝑅max = 𝐶 = 𝐵 log2 (1 +
𝑆

𝑁
)     bps 

Where 𝐶 = channel capacity  = the maximum rate at which information can be transmitted 

across that channel without error; it is measured in bits per second (bps). 

let 𝑅 be the operating information rate. 

o If 𝑅 ≤ 𝐶, it is possible to receive data with small probabilities of error, even with noise. 

o If 𝑅 > 𝐶, errors can not be avoided regardless of the coding technique used. 

If we would like to increase 𝑅max in the above equation, we can increase 𝐵 and/or the SNR. 

o Larger SNR implies working at, for example, higher Tx powers or shorter distances. In 

some cases, this is not that easy to achieve. But in general, as the SNR increased 𝑅 would 

also increase without errors for a given 𝐵 channel. However, you must note that: when 

𝑁 → 0 then 𝑆𝑁𝑅 → ∞ and hence 𝑅max → ∞ regardless of 𝐵 (is it possible?). 

o As for increasing 𝐵 , it requires changing the medium or buying a license for extra 

bandwidth. In general, as 𝐵 increased, it can follow faster changes in the information 

signal, thereby increasing 𝑅 . Nevertheless, when 𝐵 → ∞, 𝐶  does not approach ∞. The 

noise is assumed to be white: the wider the bandwidth, the more the noise admitted to 

the system. This means, as 𝐵 increases, SNR decreases at the same 𝑆. 

Theoretical Capacity 

Suppose that the noise is white with PSD 𝜂/2 (W/Hz), and assume the received signal power is 

fixed at a value 𝑆 (W), the channel capacity would be: 

𝑅max = 𝐶 = 𝐵 log2 (1 +
𝑆

𝜂𝐵
) , thus, when 𝐵 → ∞ we get: 

𝐶 = lim
𝐵→∞

{𝐵 log2 (1 +
𝑆

𝜂𝐵
)} = lim

𝐵→∞
{
𝑆

𝜂
log2 (1 +

𝑆

𝜂𝐵
)

𝜂𝐵
𝑆
} ≈

𝑆

𝜂
log2 𝑒 

∴ 𝐶 = 1.44
𝑆

𝜂
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This gives the maximum possible channel capacity as a function of the received signal power 

and the noise PSD. In actual systems design, the channel capacity might be compared to this 

value to decide whether a further increase in B is worthwhile. 

1.11 INTER-SYMBOL INTERFERENCE (ISI) 

Previously, we discussed the crosstalk problem (distortion caused by time dispersion). This 

results in spreading of time signals and overlapping among adjacent bit waveforms. This 

overlap is also known as ISI. It is caused not only by channel distortion but also by multi-path 

effects. 

To illustrate the ISI problem, we should first introduce the eye pattern. 

 

               

SNR=20dB SNR=15dB SNR=10dB 

To reduce the ISI, we must: 

(a) Consider the Shannon criterion for the maximum rate. 

(b) Frequency limitation of the transmitted signal to fit B. 

(c) Reduce the effects of the multi-path problem (How?). 
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1.12 MULTI-LEVEL BASEBAND SIGNALING (M-ARY) 

Binary shift keying means sending a single bit over the symbol interval 𝑇𝑏 (or at the bit rate 

1/𝑇𝑏 bits/sec). To increase the data transfer rate, it is possible to combine several bits in one 

symbol. In this technique, we send one symbol per 𝑚 data bits. So, we the transmitted symbols 

range between 𝑀  levels (know that 𝑀 = 2𝑚 ). The plots below illustrate the M-ary 

transmission. 

  

In this example, we set 2 bits per symbol (hence 22 = 4 levels). The information rate is still 

unchanged, but the symbol rate is halved (as in the second plot). On other words, we can send 

twice the information rate at the same symbol rate (as in the third plot). Practically, it is difficult 

to consider the multi-level baseband signaling through noisy and distorting channels. the 

receiver now must distinguish the incoming symbols according to their levels. Thus the 

probability of error increases as 𝑀 becomes larger. 

Advantage:  

o A higher information transfer rate is possible for a given symbol rate and a channel 

bandwidth. 

Disadvantages: 

o M-ary baseband signaling results in reduced noise/interference immunity when it is 

compared to the binary signaling.  
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o It involves more complex symbol recovery processing in the receiver.  

o It imposes a greater requirement for linearity and/or reduced distortion in the Tx/Rx 

hardware and in the channel. 
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1.13 PROBABILITY OF ERROR AT RECEPTION 

The detection of digital signals involves two processes: 

(1) Reduction of each received voltage pulse (i.e. symbol) to a single numerical value, (just 

like quantization). 

(2) Comparison of this value with a reference voltage to determine which symbol was 

transmitted. 

The unipolar binary symbols (0 and 1) is represented by two voltage levels (e.g. 0V and 3V). 

Intuition tells us that a sensible strategy would be to set the reference, 𝑉ref, mid-way between 

the two voltage levels (i.e. at 1.5V). 

    

 

In general, for equiprobable symbols the decision level is set to 𝜓 =
𝑉0+𝑉1

2
. For unequal 

transmission of the symbols, we need to determine the optimum threshold using more 

advanced mathematics. 

Since the noise with a Gaussian PDF is common and analytically tractable, the bit error rate 

(BER) of a communication system is often modeled assuming Gaussian noise alone. 

 

 See Str. Section 8.6.4. 
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(a) The PDF of a binary information signal which can employ voltage levels V0 and V1 only. (b) The PDF of a zero 
mean Gaussian noise process, vn(t), with RMS value σ Volts. (c) The PDF of the sum of the signal and the noise. 

 

Let the probability of sending symbol 0 (the voltage level 𝑉0) is: 

𝑝0(𝑣𝑛) =
1

𝜎√2𝜋
𝑒
−(𝑣𝑛−𝑉0)

2

2𝜎2  

And the PDF of sending symbol 1 (the voltage level 𝑉1) is: 

𝑝1(𝑣𝑛) =
1

𝜎√2𝜋
𝑒
−(𝑣𝑛−𝑉1)

2

2𝜎2  

Now, if the symbol 0 is transmitted, let 𝑃𝑒1 be the probability of the received signal plus noise 

that is above the threshold at the decision instant (i.e. seen as voltage level 𝑉1), [shaded area 

under the curve 𝑝0(𝑣𝑛) in Figure (c)]. The equation of the probability of error is: 

𝑃𝑒1 = ∫
1

𝜎√2𝜋
𝑒
−(𝑣𝑛−𝑉0)

2

2𝜎2 𝑑𝑣𝑛

∞

𝜓

 

Also, if the digital symbol 1 is transmitted, let 𝑃𝑒0 be the probability that the received signal plus 

noise is below the threshold at the decision instant (i.e. seen as voltage level 𝑉0). So: 

𝑃𝑒0 = ∫
1

𝜎√2𝜋
𝑒
−(𝑣𝑛−𝑉1)

2

2𝜎2 𝑑𝑣𝑛

𝜓

−∞
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It is clear from the symmetry of this problem that 𝑃𝑒0 is identical to 𝑃𝑒1, and for equiprobable 

symbols 𝑝0(𝑣𝑛) = 𝑝1(𝑣𝑛) =
1

2
, the net probability of error 𝑃𝐸  will be: 

𝑃𝐸 = 𝑝0𝑃𝑒0 + 𝑝1𝑃𝑒1 =
1

2
(𝑃𝑒0 + 𝑃𝑒1) = ∫

1

𝜎√2𝜋
𝑒
−(𝑣𝑛−𝑉0)

2

2𝜎2 𝑑𝑣𝑛

∞

𝜓

 

using  𝑥 =
𝑣𝑛 − 𝑉0
𝜎

      ⇒ 𝑃𝐸 =
1

√2𝜋
∫ 𝑒−𝑥

2
𝑑𝑥

∞

𝜓
𝜎

 

This integral cannot be evaluated analytically but it can be recast as a complementary error 

function, which is defined by: 

Erfc(𝑧) ≈
1

√2𝜋
∫ 𝑒−𝑥

2
𝑑𝑥

∞

𝑧

 

Thus                                                                        𝑃𝐸 = Erfc (
𝜓

𝜎
) 

 

The advantage of using Erfc (also called Q-function) in the expression for 𝑃𝐸  is that this function 

has been extensively tabulated. Sometimes is tabulated as erf(z) or erfc(z). 

 

For unipolar binary (𝑉0 = 0,   𝑉1 = 𝐴  → 𝜓 =
𝐴

2
), the average signal power is: 𝑆 =

(02+𝐴2)

2
 

And the average noise power is 𝑁 = 𝜎2, so that:      𝑃𝐸 = Erfc {√
𝑆

 2𝑁 
 } 

For polar binary (𝑉0 =
−𝐴

2
,   𝑉1 =

𝐴

2
 → 𝜓 = 0), the average signal power is: 𝑆 =

 [(
−𝐴

2
)
2
+(

𝐴

2
)
2
] 

2
 

And the average noise power is 𝑁 = 𝜎2, we get:     𝑃𝐸 = Erfc {√
𝑆

 𝑁 
 } 

Therefore, the average transmitted power for the unipolar signal must be twice that of the polar 

binary signal to achieve the same probability of error. For equiprobable signals, the polar 

binary signaling also has an advantage in the optimum decision threshold. It is simply set at the 

 

 See Q-Function and Error Function Complementary in this document and Str. Appendix G. 
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zero Volt, whereas the receiver for the ON-OFF binary signaling, the threshold must be adjusted 

to half the amplitude of the received signal. 

So, which is the better: the polar or the unipolar signaling in terms of the probability of error? 

why? 


