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5. TEMPERATURE DISTRIBUTION IN MASS CONCRETE 

One major difficulty is how to compute the temperature distribution in complex geometries, 

and how to incorporate the incremental construction into the analysis. 

One of the challenges in mass concrete design is to maximize the thickness of the 

concrete layers without causing thermally induced cracks and to minimize the time between 

the placements of successive layers. The designer is under pressure from the contractor, who 

wants large layers to be placed in rapid succession in order to speed up construction. For 

large projects, major economic savings can be achieved when the size and placement of the 

lifts are perfectly orchestrated; the penalty for not coordinating construction of the layers is to 

incur large labour costs while the construction crew waits for the next placement or repairing, 

or even demolishing an overly thick layer that cracked as a result of thermal stresses.  

This section introduces the finite element method, the most powerful tool available to 

compute temperature distributions in solid materials. 
 
 

5.1 Thermal Properties of Concrete 
 
 

Coefficient of thermal expansion (α) is defined as the change in unit length per degree of 

temperature change. Selecting an aggregate with a low coefficient of thermal expansion when 

it is economically feasible and technologically acceptable, may, under certain conditions, 

become a critical factor for crack prevention in mass concrete. This is because the thermal 

shrinkage strain is determined both by the magnitude of temperature drop and the coefficient 

of linear thermal expansion of concrete; the latter, in turn, is controlled primarily by the 

coefficient of linear thermal expansion of the aggregate which is the primary constituent of 

concrete. 

The reported values of the coefficient of linear thermal expansion for saturated portland 

cement pastes of varying water-cement ratios, for mortars containing 1:6 cement/natural 

silica sand, and for concrete mixtures with different aggregate types are approximately 18, 

12, and 6 to 12 × 10
−6

 per °C, respectively. The coefficient of thermal expansion of 

commonly used rocks and minerals varies from about 5 × 10
−6

 per °C for limestones and 

gabbros to 11 to 12 × 10
−6

 per °C for sandstones, natural gravels, and quartzite. The 

coefficient of thermal expansion can be estimated from the weighted average of the 

components, assuming 70 to 80 percent aggregate in the concrete mixture. 

 

Specific heat is defined as the quantity of heat needed to raise the temperature of a unit mass 

of a material by one degree. The specific heat of normal weight concrete is not very much 

affected by the type of aggregate, temperature, and other parameters. Typically the values of 

specific heat are in the range of 0.9 to 1.0 kJ/kg.°C. 

 

Thermal conductivity gives the heat flux transmitted through a unit area of a material under a 

unit temperature gradient. The thermal conductivity of concrete is influenced by the 

mineralogical characteristics of aggregate, and by the moisture content, density, and 

temperature of concrete.  
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Thermal diffusivity is defined as: 

  
 
  

 

where   = diffusivity 

          k  = conductivity 

           c = specific heat 

           ρ = density of concrete. 

 

Heat will move more readily through a concrete with higher thermal diffusivity. For normal-

weight concrete, the conductivity usually controls the thermal diffusivity because the density 

and specific heat do not vary much. Table 5.1 shows typical values of thermal conductivity 

and diffusivity for concretes made with different types of coarse aggregate. 

 

 

Table 5.1a: Thermal conductivity 

 

 

 

 

 

 

Table 5.1b: Thermal diffusivity 

 

 

 

 

 

 

 

 

 



 

P
ag

e3
 

5.2 Heat Transfer Analysis 

Heat transfer is the exchange of thermal energy between physical systems. The rate of heat 

transfer is dependent on the temperatures of the systems and the properties of the intervening 

medium through which the heat is transferred. The three fundamental modes of heat 

transfer are conduction, convection and radiation. 

The fundamental equation governing the distribution of temperature in a solid subjected 

to internal heat generation was developed by Fourier. Consider a parallelepiped representing 

a volumetric element of a material, with conductivity coefficient k (Fig. 5.1). The change in 

heat flux in the x-direction is given by the equation: 

 

                                                         
 

  
. 

  

  
/                                                          (5.1) 

  where T is the temperature. 

 

 

 

 

 

 

 

 

Similarly the y and z directions: 
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/                                                         (5.2) 

and 
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/                                                           (5.3) 

 

Addition of the flux variation in the three directions, Eqs. (5.1) to (5.3) determines the 

amount of heat introduced in the interior of the element per unit time: 

                                2
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/  
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/3                                  (5.4) 

 

In the above derivation the material was considered isotropic. Considering it also 

homogeneous, Eq. (5.4) becomes 

Figure (5.1): Heat flux in the x-direction 
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                                                .
   

   
 
   

   
 
   

   
/                                                (5.5) 

 

For a material with mass density ρ and specific heat c, the increase of internal energy in the 

element is given by 

                                                                     
  

  
                                                       (5.6) 

where t is the time.  

When the material does not generate any heat, we equate Eqs. (5.5) and (5.6), obtaining 

                                                .
   

   
 
   

   
 
   

   
/    

  

  
                                          (5.7) 

And then Eq. (5.7) is rewritten as 

                                                                       ̇                                                           (5.8) 

where  

                            ̇  
  

  
                          

                              .
   

   
 
   

   
 
   

   
/ 

                             
 

  
 = thermal diffusivity                         

 

Consider the case when heat generation occurs inside the material. Equation (5.5) when 

added to the quantity of heat generated in the interior of the element per unit of time,      

wdxdydz, can be equated with the increase of internal energy in the element. Therefore, the 

Fourier equation is obtained 

                                           .
   

   
 
   

   
 
   

   
/      

  

  
                                      (5.9) 

or 

                                                                     ̇                                                  (5.10) 

 

In the steady-state, T and w are not function of time, therefore Eq. (5.10) becomes: 

                                                                                                                          (5.11) 

 

Note, Eq. (5.8) is applicable to any isotropic homogeneous material. We will concentrate on 

the problem of determining temperature distribution in mass concrete. In this case, the heat 

generation rate w is associated with the adiabatic temperature rise. For a concrete with a 

density ρ and a cement content β (kg/m
3
), the relationship between the adiabatic temperature 

rise Ta and the heat of hydration Qh is given by 
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                                                           (5.12) 

The heat of hydration Qh is obtained per unit mass of cement, therefore the factor β/ρ must be 

used to calculate the heat of hydration per unit mass of concrete. The heat generation rate w is 

related to the heat of hydration by the following equation: 

                                                                
   

  
                                                           (5.13) 

Using Eq. (5.12) we obtain 

                                                                 
   

  
                                                          (5.14) 

 

In order to determine a unique solution to the Fourier Eq. (5.10), adequate initial and 

boundary conditions must be given. They should be compatible with the physical conditions 

of the particular problem. 

5.2.1 Initial condition 
The initial condition must be defined by prescribing the temperature distribution throughout 

the body at time zero as a known function of x, y, and z. 

                                                 (         )   (     )                                      (5.15) 

 

5.2.2 Boundary conditions 

I. Prescribed temperature boundary. The temperature existing on a portion of the boundary 

of the body Γt is given as 

                                    (       )   (       )                                             (5.16) 
 

This condition is also known as Dirichlet or essential boundary condition. In mass concrete, 

this condition may exist in the concrete-water contact, where the convection is small, making 

the temperature of the concrete that is in contact with water the same as that of the water. 

II. Prescribed heat flow boundary. A prescribed heat flow boundary condition can be 

expressed as 

                                 
  

  
(       )    (       )                                           (5.17) 

 

where qn is the given amount of heat flow at point (x, y, z), and n is the outward normal to the 

surface. 

III. Convection boundary condition. The rate of heat transfer across a boundary layer is 

given by 
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(       )   (     )                                           (5.18) 

 

where h = heat transfer coefficient 

         Te = known temperature of the external environment 

         Ts = surface temperature of the solid 

        Γh = portion of the boundary surface undergoing convective heat transfer 

 

For a linear convection boundary condition, N = 1, and Eq. (5.18) becomes 

                               
  

  
(       )   (     )    (       )                         (5.19) 

 

where   (       )      

 

IV. Radiation boundary condition. Heat transfer by radiation between boundary condition 

surface Γ, and its surroundings can be expressed by 

                         (       )    4
 

 
  
 
 
  
  
5 0  

    
 
1                                        (5.20) 

 

where V = radiation view factor 

           σ = Stefan-Boltzmann constant 

          εr = emissivity of the external radiation source 

          εs = emissivity of the surface 

Tr and Ts = absolute temperature of the radiation source and the surface, respectively. 

 

5.3 Finite Element Formulation 
 

The finite element method is a powerful tool to solve thermal problems. The method is 

completely general with respect to geometry, material properties, and arbitrary boundary 

conditions. Complex bodies of arbitrary shape, including several different anisotropic 

materials, can be easily represented. For mass concrete structures, the significant boundary 

conditions that apply are Cases I and III, that is, the prescribed temperature and the 

convection boundary conditions. Many approaches exist that present a finite element 

formulation for temperature distribution in mass concrete. Below, we will follow the 

approach suggested by Souza Lima et al. (1976). First, we will start with the steady-state 

case, and then move to the transient-state case. The objective is to solve the Fourier equation 

given the necessary initial and boundary conditions. 

 

Consider a body with the two different boundary conditions: Γt where the temperature is 

prescribed and Γh where there is a convection boundary condition (see Fig. 5.2). 
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For a point P in Γt (steady-state case) 

 

                                                                   ( )                                                          (5.21) 

and for a point P in Γh (steady-state case) 

 

                                                            
  

  
   ( )                                                    (5.22) 

 

 

 

 

 

 

 

 

Consider a continuous and differentiable function Φ in the domain shown in Figure (5.2) with 

the condition Φ = 0 along Γt. No condition on Φ is imposed along Γh. Φ is often referred to as 

“weighting function” and is relevant to note that it is, and will remain, arbitrary. 
 

Multiplying both sides of Eq. (5.11) by Φ, we obtain 

                                                                                                                       (5.23) 
 

Integrating the above equation in domain V, 

                                              ∫        
 

 ∫       
 

                                       (5.24) 
 

Using the divergence theorem in the left side of Eq. (5.24) 

        ∫        
 

   ∫ .
  

  

  

  
 
  

  

  

  
 
  

  

  

  
/   

 
  ∫  

  

  
   

 
      (5.25) 

 

Since Φ = 0 along Γt and using the boundary conditions defined above, Eq. (5.19) 

becomes 

              ∫  
  

  
   

 
  ∫  

  

  
   

  
  ∫      

  
  ∫      

  
            (5.26) 

Introducing Eqs. (5.25) and (5.26) into Eq. (5.23) 

Figure (5.2): BC’s in which the temperature is prescribed at Γt and convection is prescribed at Γh.  
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    ∫ .
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  ∫      

  
 ∫      

 
 ∫      

  
       (5.27) 

Equation (5.27) can be used to solve the steady-state Fourier heat equation. Consider a set of 

n functions Φi with Φi = 0 on Γt. Thus any temperature field satisfying the boundary 

condition on Γh also satisfies Eq. (5.27) for each of the functions Φi. 

Equation (5.27) may be used instead of Eqs. (5.11), (5.21), and (5.22) to solve 

approximately for T in the following manner: 

                                                             ∑                                                          (5.28) 

 

where ci are unknown constants and Φ0 is any smooth function satisfying the boundary 

condition on Φt. Of course the above may not satisfy Eq. (5.11) at every point in the body. 

However, substituting T given by Eq. (5.28) into Eq. (5.27) a system of linear equations is 

obtained that allows the determination of the coefficients ci. By increasing the number of 

coefficients in Eq. (5.28) a better approximation to the solution is obtained. Φi are referred to 

as interpolation functions and they are almost invariably polynomials. 

Finite element analysis idealizes the continuum by an assemblage of discrete elements or 

sub-regions. These elements may be of variable size and shape and are interconnected by a 

finite number of nodal points Pi. The interpolation functions Φi, should be chosen so that 

coefficients ci are numerically equal to temperature T, at n nodal points Pi previously chosen 

in the domain. In order for the equality ci = T(Pi) to be true at the nodal points Pi the 

following conditions should be obeyed: Φi(Pi) = 1, Φj(Pi) = 0( j ≠ i), and Φ0(Pi) = 0. 

It is convenient to introduce a matrix formulation: {T} is a vector of n elements with 

values T(Pi) and {w} is a vector of n elements with the values 

                                          ∫        
 ∫          

                                         (5.29) 

 

where woi is the value of the first term of Eq. (5.24), for Φ = Φi and T is replaced by the 

function Φ0. For the steady-state case, this notation leads to 

                                                        , -* +  * +                                                          (5.30) 

 

where [K] is the conductivity matrix (n × n) with values 

                                         , -      ∫       
       

                                      (5.31) 

 

Determining the heat transfer in mass concrete is additionally complicated, because it 

involves the solution of the transient case and the continuous change of boundaries as 

construction progresses. To solve this problem, an incremental calculation of the linear 

transient problem is introduced. In the transient case, the Fourier equation is given by Eq. 

(5.10), which differs from the steady-state case by the term ρcṪ and because w is a function 

of time. Using the divergence theorem: 
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                         ∫ .
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  ∫      

  
  

                                   ∫      
 

 ∫      
  

   ∫   ̇   
 

                    (5.32) 

Or, if the matrix notation is used: 

                                                        , -* +  * +  , -{ ̇}                                          (5.33) 

 

where [c] is the capacity matrix (n × n) with values 

                                                                ∫         
                                          (5.34) 

 

To integrate Eq. (5.33), an incremental method is usually employed. Taking small interval Δt 

                                              { ̇}  
 

  
,* ( )+  * (    )+-                                (5.35) 

 

and incorporating Eq. (5.35) into Eq. (5.33) 

                             ., -  
 

  
, -/ * ( )+  * +  

 

  
, -* (    )+                  (5.36) 

 

Starting from a known initial temperature distribution, we proceed stepwise. Equation (5.36) 

allows the determination of {T(Δt)} for the first step. Once the new temperature is known, we 

proceed to the next step, giving a new increment Δt and continuing the process until the 

distribution of temperatures over the period of time of interest is known. 

 

5.4 Examples of Application 
 

Typical problems that a concrete technologist faces when studying thermal stresses in mass 

concrete include the type of aggregate, amount of pozzolan, size of the concrete lift, and 

temperature of fresh concrete that might affect the maximum temperature rise in concrete. To 

study these parameters a finite element model of a concrete block placed on a foundation 

rock can be developed, as shown in Figure (5.3). The finite element mesh is made of 385 

nodal points and 344 elements. Note that the size of elements in the concrete block is much 

smaller than in the foundation; because we are mainly interested in temperature distribution 

inside the concrete block. The material properties for different types of concrete and for the 

foundation rock are shown in Table 5.2. An important parameter in thermal analysis is the 

adiabatic temperature rise. Figure (5.4) shows the assumed values for different levels of 

pozzolan replacements. 
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Figure (5.3): Finite element mesh of a concrete block and foundation. 
 

Figure (5.4): Effect of percentage of pozzolan on the adiabatic temperature rise. 
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Table 5.2: Properties of concrete and foundation rock 

 

 

 

 

 

 

To illustrate the importance of lift thickness, consider the mesh shown in Figure (5.3). 

Assume that the concrete was placed either: (a) in two lifts of 1.50 m placed 3 days apart, or 

(b) in one lift of 3.00 m. Given that the temperature distribution changes with time, however, 

the designer is usually concerned with the maximum temperature distribution that occurs 

within the concrete block. Figure (5.5) shows the maximum temperature distribution in the 

concrete block for both cases. The maximum temperature with two 1.50-m lifts was 46°C, 

which is likely to cause fewer problems than the 56°C reached using the one 3.00-m lift. 

The thermal diffusivity of concrete is controlled mainly by the aggregate. To analyze the 

effect of thermal diffusivity on the temperature distribution, consider three types of 

aggregates: basalt, gravel, and granite. The temperature evolution for the point A, (indicated 

in Fig. 5.3) is shown in Figure (5.6). Concrete made with gravel has the highest thermal 

diffusivity, therefore, it dissipates heat faster and, consequently, shows the smallest 

temperature rise. 

The use of pozzolans is an efficient method of controlling the temperature rise in 

concrete. The performance of three concrete mixtures is compared, and the adiabatic 

temperature rise for each type of concrete is shown in Figure (5.4). The advantage of 

including pozzolans is illustrated in Figure (5.7), where the maximum temperature rise is 

significantly reduced when such replacements are used. 

Refrigeration is another powerful method of controlling temperature rise in mass 

concrete. Pre-cooling can be achieved by replacing the mixing water by ice or by cooling the 

coarse aggregate. Post-cooling can be achieved by circulation of cold water through pipes 

embedded in concrete. Usually pre-cooling is preferred because it is more economical and 

does not involve extra labour, such as the embedding of pipes, pumping cold water, and 

eventually re-grouting the pipes. The importance of temperature of fresh concrete is shown in 

Figure (5.8). When the concrete is placed at 25°C, the maximum temperature is 52°C, 

compared to 42°C when the concrete is placed at 10°C. 
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Figure (5.5): Maximum temperature distribution in the concrete block. 
The size of the concrete lift is an important parameter in the temperature distribution in mass 

concrete. Thick lifts are attractive for fast construction, but high temperatures are usually generated 

in the concrete. Smaller lifts generate much lower temperatures, however, they may create problems 

with the construction scheduling. It is the responsibility of the engineer to establish the optimal 

thickness of the lifts. For this, a thermal analysis is usually performed using the finite element 

method. As an illustration, a thermal analysis was conducted for the finite element mesh shown in 

Fig (5.3), with two conditions: (a) two concrete lifts of 1.50 m placed 3 days apart, and (b) one lift 

of 3.00 m. The temperature distribution in the concrete is shown above. For case (a) the maximum 

temperature in the concrete is 46°C that is much lower than the 56°C for case (b). For this analysis, 

the temperature of the fresh concrete was assumed to be 17°C, the aggregate was assumed to be 

granite, and no pozzolan was used. 
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Figure (5.6): Temperature evolution for concrete with different thermal diffusivities. 
Thermal diffusivity of concrete is a property which greatly influences the temperature distribution within 

the mass. Higher thermal diffusivity leads to faster heat loss which results in a lower maximum 

temperature. It may not always be desirable to have a rapid dissipation of heat, because the concrete may 

not have enough tensile strength at earlier ages. For this study two lifts of 1.50 m each was considered. 

The reason for the first temperature drop is given in the caption of Fig. (5.7). 

Figure (5.7): Influence of Pozzolan on the temperature of concrete. 
Pozzolans can significantly reduce the temperature inside mass concrete. The plot above shows 

the temperature evolution for point A of Fig.(5.3). Placement consisted of two concrete lifts of 

1.50 m 3 days apart. Point A is at the top of the first lift, so there is an initial temperature 

increase, followed by a quick heat loss to the ambient temperature (17°C) until the next lift is 

placed. The temperature then increases up to a maximum, after which the block starts to cool. 
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Figure (5.8): Effect of fresh concrete on the maximum temperature distribution. 
One of the most effective methods of controlling the temperature rise in mass concrete is by lowering 

the temperature of fresh concrete. A simple method is to use ice instead of mixing water or pre-cooling 

the aggregate. Unlike change in the size of lift, modifications in the temperature of fresh concrete do 

not affect construction scheduling. This finite element analysis assumed three different temperatures of 

fresh concrete: 10, 17, and 25°C. The temperature distribution for fresh concrete placed at a 

temperature of 17°C is shown in Fig. (5.5a). The concrete was placed in two 1.50 m lifts each, with 

granite as the coarse aggregate and an ambient temperature of 17°C. 


