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Chapter 1

Introduction to Statistics
and Data Analysis

1.1 Overview: Statistical Inference, Samples, Populations,
and the Role of Probability

Beginning in the 1980s and continuing into the 21st century, an inordinate amount
of attention has been focused on improvement of quality in American industry.
Much has been said and written about the Japanese “industrial miracle,” which
began in the middle of the 20th century. The Japanese were able to succeed where
we and other countries had failed–namely, to create an atmosphere that allows
the production of high-quality products. Much of the success of the Japanese has
been attributed to the use of statistical methods and statistical thinking among
management personnel.

Use of Scientific Data

The use of statistical methods in manufacturing, development of food products,
computer software, energy sources, pharmaceuticals, and many other areas involves
the gathering of information or scientific data. Of course, the gathering of data
is nothing new. It has been done for well over a thousand years. Data have
been collected, summarized, reported, and stored for perusal. However, there is a
profound distinction between collection of scientific information and inferential
statistics. It is the latter that has received rightful attention in recent decades.

The offspring of inferential statistics has been a large “toolbox” of statistical
methods employed by statistical practitioners. These statistical methods are de-
signed to contribute to the process of making scientific judgments in the face of
uncertainty and variation. The product density of a particular material from a
manufacturing process will not always be the same. Indeed, if the process involved
is a batch process rather than continuous, there will be not only variation in ma-
terial density among the batches that come off the line (batch-to-batch variation),
but also within-batch variation. Statistical methods are used to analyze data from
a process such as this one in order to gain more sense of where in the process
changes may be made to improve the quality of the process. In this process, qual-
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2 Chapter 1 Introduction to Statistics and Data Analysis

ity may well be defined in relation to closeness to a target density value in harmony
with what portion of the time this closeness criterion is met. An engineer may be
concerned with a specific instrument that is used to measure sulfur monoxide in
the air during pollution studies. If the engineer has doubts about the effectiveness
of the instrument, there are two sources of variation that must be dealt with.
The first is the variation in sulfur monoxide values that are found at the same
locale on the same day. The second is the variation between values observed and
the true amount of sulfur monoxide that is in the air at the time. If either of these
two sources of variation is exceedingly large (according to some standard set by
the engineer), the instrument may need to be replaced. In a biomedical study of a
new drug that reduces hypertension, 85% of patients experienced relief, while it is
generally recognized that the current drug, or “old” drug, brings relief to 80% of pa-
tients that have chronic hypertension. However, the new drug is more expensive to
make and may result in certain side effects. Should the new drug be adopted? This
is a problem that is encountered (often with much more complexity) frequently by
pharmaceutical firms in conjunction with the FDA (Federal Drug Administration).
Again, the consideration of variation needs to be taken into account. The “85%”
value is based on a certain number of patients chosen for the study. Perhaps if the
study were repeated with new patients the observed number of “successes” would
be 75%! It is the natural variation from study to study that must be taken into
account in the decision process. Clearly this variation is important, since variation
from patient to patient is endemic to the problem.

Variability in Scientific Data

In the problems discussed above the statistical methods used involve dealing with
variability, and in each case the variability to be studied is that encountered in
scientific data. If the observed product density in the process were always the
same and were always on target, there would be no need for statistical methods.
If the device for measuring sulfur monoxide always gives the same value and the
value is accurate (i.e., it is correct), no statistical analysis is needed. If there
were no patient-to-patient variability inherent in the response to the drug (i.e.,
it either always brings relief or not), life would be simple for scientists in the
pharmaceutical firms and FDA and no statistician would be needed in the decision
process. Statistics researchers have produced an enormous number of analytical
methods that allow for analysis of data from systems like those described above.
This reflects the true nature of the science that we call inferential statistics, namely,
using techniques that allow us to go beyond merely reporting data to drawing
conclusions (or inferences) about the scientific system. Statisticians make use of
fundamental laws of probability and statistical inference to draw conclusions about
scientific systems. Information is gathered in the form of samples, or collections
of observations. The process of sampling is introduced in Chapter 2, and the
discussion continues throughout the entire book.

Samples are collected from populations, which are collections of all individ-
uals or individual items of a particular type. At times a population signifies a
scientific system. For example, a manufacturer of computer boards may wish to
eliminate defects. A sampling process may involve collecting information on 50
computer boards sampled randomly from the process. Here, the population is all
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computer boards manufactured by the firm over a specific period of time. If an
improvement is made in the computer board process and a second sample of boards
is collected, any conclusions drawn regarding the effectiveness of the change in pro-
cess should extend to the entire population of computer boards produced under
the “improved process.” In a drug experiment, a sample of patients is taken and
each is given a specific drug to reduce blood pressure. The interest is focused on
drawing conclusions about the population of those who suffer from hypertension.

Often, it is very important to collect scientific data in a systematic way, with
planning being high on the agenda. At times the planning is, by necessity, quite
limited. We often focus only on certain properties or characteristics of the items or
objects in the population. Each characteristic has particular engineering or, say,
biological importance to the “customer,” the scientist or engineer who seeks to learn
about the population. For example, in one of the illustrations above the quality
of the process had to do with the product density of the output of a process. An
engineer may need to study the effect of process conditions, temperature, humidity,
amount of a particular ingredient, and so on. He or she can systematically move
these factors to whatever levels are suggested according to whatever prescription
or experimental design is desired. However, a forest scientist who is interested
in a study of factors that influence wood density in a certain kind of tree cannot
necessarily design an experiment. This case may require an observational study
in which data are collected in the field but factor levels can not be preselected.
Both of these types of studies lend themselves to methods of statistical inference.
In the former, the quality of the inferences will depend on proper planning of the
experiment. In the latter, the scientist is at the mercy of what can be gathered.
For example, it is sad if an agronomist is interested in studying the effect of rainfall
on plant yield and the data are gathered during a drought.

The importance of statistical thinking by managers and the use of statistical
inference by scientific personnel is widely acknowledged. Research scientists gain
much from scientific data. Data provide understanding of scientific phenomena.
Product and process engineers learn a great deal in their off-line efforts to improve
the process. They also gain valuable insight by gathering production data (on-
line monitoring) on a regular basis. This allows them to determine necessary
modifications in order to keep the process at a desired level of quality.

There are times when a scientific practitioner wishes only to gain some sort of
summary of a set of data represented in the sample. In other words, inferential
statistics is not required. Rather, a set of single-number statistics or descriptive
statistics is helpful. These numbers give a sense of center of the location of
the data, variability in the data, and the general nature of the distribution of
observations in the sample. Though no specific statistical methods leading to
statistical inference are incorporated, much can be learned. At times, descriptive
statistics are accompanied by graphics. Modern statistical software packages allow
for computation of means, medians, standard deviations, and other single-
number statistics as well as production of graphs that show a “footprint” of the
nature of the sample. Definitions and illustrations of the single-number statistics
and graphs, including histograms, stem-and-leaf plots, scatter plots, dot plots, and
box plots, will be given in sections that follow.
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The Role of Probability

In this book, Chapters 2 to 6 deal with fundamental notions of probability. A
thorough grounding in these concepts allows the reader to have a better under-
standing of statistical inference. Without some formalism of probability theory,
the student cannot appreciate the true interpretation from data analysis through
modern statistical methods. It is quite natural to study probability prior to study-
ing statistical inference. Elements of probability allow us to quantify the strength
or “confidence” in our conclusions. In this sense, concepts in probability form a
major component that supplements statistical methods and helps us gauge the
strength of the statistical inference. The discipline of probability, then, provides
the transition between descriptive statistics and inferential methods. Elements of
probability allow the conclusion to be put into the language that the science or
engineering practitioners require. An example follows that will enable the reader
to understand the notion of a P -value, which often provides the “bottom line” in
the interpretation of results from the use of statistical methods.

Example 1.1: Suppose that an engineer encounters data from a manufacturing process in which
100 items are sampled and 10 are found to be defective. It is expected and antic-
ipated that occasionally there will be defective items. Obviously these 100 items
represent the sample. However, it has been determined that in the long run, the
company can only tolerate 5% defective in the process. Now, the elements of prob-
ability allow the engineer to determine how conclusive the sample information is
regarding the nature of the process. In this case, the population conceptually
represents all possible items from the process. Suppose we learn that if the process
is acceptable, that is, if it does produce items no more than 5% of which are de-
fective, there is a probability of 0.0282 of obtaining 10 or more defective items in
a random sample of 100 items from the process. This small probability suggests
that the process does, indeed, have a long-run rate of defective items that exceeds
5%. In other words, under the condition of an acceptable process, the sample in-
formation obtained would rarely occur. However, it did occur! Clearly, though, it
would occur with a much higher probability if the process defective rate exceeded
5% by a significant amount.

From this example it becomes clear that the elements of probability aid in the
translation of sample information into something conclusive or inconclusive about
the scientific system. In fact, what was learned likely is alarming information to
the engineer or manager. Statistical methods, which we will actually detail in
Chapter 10, produced a P -value of 0.0282. The result suggests that the process
very likely is not acceptable. The concept of a P-value is dealt with at length
in succeeding chapters. The example that follows provides a second illustration.

Example 1.2: Often the nature of the scientific study will dictate the role that probability and
deductive reasoning play in statistical inference. Exercise 9.40 on page 294 provides
data associated with a study conducted at the Virginia Polytechnic Institute and
State University on the development of a relationship between the roots of trees and
the action of a fungus. Minerals are transferred from the fungus to the trees and
sugars from the trees to the fungus. Two samples of 10 northern red oak seedlings
were planted in a greenhouse, one containing seedlings treated with nitrogen and
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the other containing seedlings with no nitrogen. All other environmental conditions
were held constant. All seedlings contained the fungus Pisolithus tinctorus. More
details are supplied in Chapter 9. The stem weights in grams were recorded after
the end of 140 days. The data are given in Table 1.1.

Table 1.1: Data Set for Example 1.2

No Nitrogen Nitrogen
0.32 0.26
0.53 0.43
0.28 0.47
0.37 0.49
0.47 0.52
0.43 0.75
0.36 0.79
0.42 0.86
0.38 0.62
0.43 0.46

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

Figure 1.1: A dot plot of stem weight data.

In this example there are two samples from two separate populations. The
purpose of the experiment is to determine if the use of nitrogen has an influence
on the growth of the roots. The study is a comparative study (i.e., we seek to
compare the two populations with regard to a certain important characteristic). It
is instructive to plot the data as shown in the dot plot of Figure 1.1. The ◦ values
represent the “nitrogen” data and the × values represent the “no-nitrogen” data.

Notice that the general appearance of the data might suggest to the reader
that, on average, the use of nitrogen increases the stem weight. Four nitrogen ob-
servations are considerably larger than any of the no-nitrogen observations. Most
of the no-nitrogen observations appear to be below the center of the data. The
appearance of the data set would seem to indicate that nitrogen is effective. But
how can this be quantified? How can all of the apparent visual evidence be summa-
rized in some sense? As in the preceding example, the fundamentals of probability
can be used. The conclusions may be summarized in a probability statement or
P-value. We will not show here the statistical inference that produces the summary
probability. As in Example 1.1, these methods will be discussed in Chapter 10.
The issue revolves around the “probability that data like these could be observed”
given that nitrogen has no effect, in other words, given that both samples were
generated from the same population. Suppose that this probability is small, say
0.03. That would certainly be strong evidence that the use of nitrogen does indeed
influence (apparently increases) average stem weight of the red oak seedlings.
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How Do Probability and Statistical Inference Work Together?

It is important for the reader to understand the clear distinction between the
discipline of probability, a science in its own right, and the discipline of inferen-
tial statistics. As we have already indicated, the use or application of concepts in
probability allows real-life interpretation of the results of statistical inference. As a
result, it can be said that statistical inference makes use of concepts in probability.
One can glean from the two examples above that the sample information is made
available to the analyst and, with the aid of statistical methods and elements of
probability, conclusions are drawn about some feature of the population (the pro-
cess does not appear to be acceptable in Example 1.1, and nitrogen does appear
to influence average stem weights in Example 1.2). Thus for a statistical problem,
the sample along with inferential statistics allows us to draw conclu-
sions about the population, with inferential statistics making clear use
of elements of probability. This reasoning is inductive in nature. Now as we
move into Chapter 2 and beyond, the reader will note that, unlike what we do in
our two examples here, we will not focus on solving statistical problems. Many
examples will be given in which no sample is involved. There will be a population
clearly described with all features of the population known. Then questions of im-
portance will focus on the nature of data that might hypothetically be drawn from
the population. Thus, one can say that elements in probability allow us to
draw conclusions about characteristics of hypothetical data taken from
the population, based on known features of the population. This type of
reasoning is deductive in nature. Figure 1.2 shows the fundamental relationship
between probability and inferential statistics.

Population Sample

Probability

Statistical Inference

Figure 1.2: Fundamental relationship between probability and inferential statistics.

Now, in the grand scheme of things, which is more important, the field of
probability or the field of statistics? They are both very important and clearly are
complementary. The only certainty concerning the pedagogy of the two disciplines
lies in the fact that if statistics is to be taught at more than merely a “cookbook”
level, then the discipline of probability must be taught first. This rule stems from
the fact that nothing can be learned about a population from a sample until the
analyst learns the rudiments of uncertainty in that sample. For example, consider
Example 1.1. The question centers around whether or not the population, defined
by the process, is no more than 5% defective. In other words, the conjecture is that
on the average 5 out of 100 items are defective. Now, the sample contains 100
items and 10 are defective. Does this support the conjecture or refute it? On the
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surface it would appear to be a refutation of the conjecture because 10 out of 100
seem to be “a bit much.” But without elements of probability, how do we know?
Only through the study of material in future chapters will we learn the conditions
under which the process is acceptable (5% defective). The probability of obtaining
10 or more defective items in a sample of 100 is 0.0282.

We have given two examples where the elements of probability provide a sum-
mary that the scientist or engineer can use as evidence on which to build a decision.
The bridge between the data and the conclusion is, of course, based on foundations
of statistical inference, distribution theory, and sampling distributions discussed in
future chapters.

1.2 Sampling Procedures; Collection of Data

In Section 1.1 we discussed very briefly the notion of sampling and the sampling
process. While sampling appears to be a simple concept, the complexity of the
questions that must be answered about the population or populations necessitates
that the sampling process be very complex at times. While the notion of sampling
is discussed in a technical way in Chapter 8, we shall endeavor here to give some
common-sense notions of sampling. This is a natural transition to a discussion of
the concept of variability.

Simple Random Sampling

The importance of proper sampling revolves around the degree of confidence with
which the analyst is able to answer the questions being asked. Let us assume that
only a single population exists in the problem. Recall that in Example 1.2 two
populations were involved. Simple random sampling implies that any particular
sample of a specified sample size has the same chance of being selected as any
other sample of the same size. The term sample size simply means the number of
elements in the sample. Obviously, a table of random numbers can be utilized in
sample selection in many instances. The virtue of simple random sampling is that
it aids in the elimination of the problem of having the sample reflect a different
(possibly more confined) population than the one about which inferences need to be
made. For example, a sample is to be chosen to answer certain questions regarding
political preferences in a certain state in the United States. The sample involves
the choice of, say, 1000 families, and a survey is to be conducted. Now, suppose it
turns out that random sampling is not used. Rather, all or nearly all of the 1000
families chosen live in an urban setting. It is believed that political preferences
in rural areas differ from those in urban areas. In other words, the sample drawn
actually confined the population and thus the inferences need to be confined to the
“limited population,” and in this case confining may be undesirable. If, indeed,
the inferences need to be made about the state as a whole, the sample of size 1000
described here is often referred to as a biased sample.

As we hinted earlier, simple random sampling is not always appropriate. Which
alternative approach is used depends on the complexity of the problem. Often, for
example, the sampling units are not homogeneous and naturally divide themselves
into nonoverlapping groups that are homogeneous. These groups are called strata,
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and a procedure called stratified random sampling involves random selection of a
sample within each stratum. The purpose is to be sure that each of the strata
is neither over- nor underrepresented. For example, suppose a sample survey is
conducted in order to gather preliminary opinions regarding a bond referendum
that is being considered in a certain city. The city is subdivided into several ethnic
groups which represent natural strata. In order not to disregard or overrepresent
any group, separate random samples of families could be chosen from each group.

Experimental Design

The concept of randomness or random assignment plays a huge role in the area of
experimental design, which was introduced very briefly in Section 1.1 and is an
important staple in almost any area of engineering or experimental science. This
will be discussed at length in Chapters 13 through 15. However, it is instructive to
give a brief presentation here in the context of random sampling. A set of so-called
treatments or treatment combinations becomes the populations to be studied
or compared in some sense. An example is the nitrogen versus no-nitrogen treat-
ments in Example 1.2. Another simple example would be “placebo” versus “active
drug,” or in a corrosion fatigue study we might have treatment combinations that
involve specimens that are coated or uncoated as well as conditions of low or high
humidity to which the specimens are exposed. In fact, there are four treatment
or factor combinations (i.e., 4 populations), and many scientific questions may be
asked and answered through statistical and inferential methods. Consider first the
situation in Example 1.2. There are 20 diseased seedlings involved in the exper-
iment. It is easy to see from the data themselves that the seedlings are different
from each other. Within the nitrogen group (or the no-nitrogen group) there is
considerable variability in the stem weights. This variability is due to what is
generally called the experimental unit. This is a very important concept in in-
ferential statistics, in fact one whose description will not end in this chapter. The
nature of the variability is very important. If it is too large, stemming from a
condition of excessive nonhomogeneity in experimental units, the variability will
“wash out” any detectable difference between the two populations. Recall that in
this case that did not occur.

The dot plot in Figure 1.1 and P-value indicated a clear distinction between
these two conditions. What role do those experimental units play in the data-
taking process itself? The common-sense and, indeed, quite standard approach is
to assign the 20 seedlings or experimental units randomly to the two treat-
ments or conditions. In the drug study, we may decide to use a total of 200
available patients, patients that clearly will be different in some sense. They are
the experimental units. However, they all may have the same chronic condition
for which the drug is a potential treatment. Then in a so-called completely ran-
domized design, 100 patients are assigned randomly to the placebo and 100 to
the active drug. Again, it is these experimental units within a group or treatment
that produce the variability in data results (i.e., variability in the measured result),
say blood pressure, or whatever drug efficacy value is important. In the corrosion
fatigue study, the experimental units are the specimens that are the subjects of
the corrosion.
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Why Assign Experimental Units Randomly?

What is the possible negative impact of not randomly assigning experimental units
to the treatments or treatment combinations? This is seen most clearly in the
case of the drug study. Among the characteristics of the patients that produce
variability in the results are age, gender, and weight. Suppose merely by chance
the placebo group contains a sample of people that are predominately heavier than
those in the treatment group. Perhaps heavier individuals have a tendency to have
a higher blood pressure. This clearly biases the result, and indeed, any result
obtained through the application of statistical inference may have little to do with
the drug and more to do with differences in weights among the two samples of
patients.

We should emphasize the attachment of importance to the term variability.
Excessive variability among experimental units “camouflages” scientific findings.
In future sections, we attempt to characterize and quantify measures of variability.
In sections that follow, we introduce and discuss specific quantities that can be
computed in samples; the quantities give a sense of the nature of the sample with
respect to center of location of the data and variability in the data. A discussion
of several of these single-number measures serves to provide a preview of what
statistical information will be important components of the statistical methods
that are used in future chapters. These measures that help characterize the nature
of the data set fall into the category of descriptive statistics. This material is
a prelude to a brief presentation of pictorial and graphical methods that go even
further in characterization of the data set. The reader should understand that the
statistical methods illustrated here will be used throughout the text. In order to
offer the reader a clearer picture of what is involved in experimental design studies,
we offer Example 1.3.

Example 1.3: A corrosion study was made in order to determine whether coating an aluminum
metal with a corrosion retardation substance reduced the amount of corrosion.
The coating is a protectant that is advertised to minimize fatigue damage in this
type of material. Also of interest is the influence of humidity on the amount of
corrosion. A corrosion measurement can be expressed in thousands of cycles to
failure. Two levels of coating, no coating and chemical corrosion coating, were
used. In addition, the two relative humidity levels are 20% relative humidity and
80% relative humidity.

The experiment involves four treatment combinations that are listed in the table
that follows. There are eight experimental units used, and they are aluminum
specimens prepared; two are assigned randomly to each of the four treatment
combinations. The data are presented in Table 1.2.

The corrosion data are averages of two specimens. A plot of the averages is
pictured in Figure 1.3. A relatively large value of cycles to failure represents a
small amount of corrosion. As one might expect, an increase in humidity appears
to make the corrosion worse. The use of the chemical corrosion coating procedure
appears to reduce corrosion.

In this experimental design illustration, the engineer has systematically selected
the four treatment combinations. In order to connect this situation to concepts
with which the reader has been exposed to this point, it should be assumed that the
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Table 1.2: Data for Example 1.3

Average Corrosion in
Coating Humidity Thousands of Cycles to Failure

Uncoated
20% 975

80% 350

Chemical Corrosion
20% 1750

80% 1550

0

1000

2000

0 20% 80%
Humidity

A
ve
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ge
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si
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Uncoated

Chemical Corrosion Coating

Figure 1.3: Corrosion results for Example 1.3.

conditions representing the four treatment combinations are four separate popula-
tions and that the two corrosion values observed for each population are important
pieces of information. The importance of the average in capturing and summariz-
ing certain features in the population will be highlighted in Section 1.3. While we
might draw conclusions about the role of humidity and the impact of coating the
specimens from the figure, we cannot truly evaluate the results from an analyti-
cal point of view without taking into account the variability around the average.
Again, as we indicated earlier, if the two corrosion values for each treatment com-
bination are close together, the picture in Figure 1.3 may be an accurate depiction.
But if each corrosion value in the figure is an average of two values that are widely
dispersed, then this variability may, indeed, truly “wash away” any information
that appears to come through when one observes averages only. The foregoing
example illustrates these concepts:

(1) random assignment of treatment combinations (coating, humidity) to experi-
mental units (specimens)

(2) the use of sample averages (average corrosion values) in summarizing sample
information

(3) the need for consideration of measures of variability in the analysis of any
sample or sets of samples
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This example suggests the need for what follows in Sections 1.3 and 1.4, namely,
descriptive statistics that indicate measures of center of location in a set of data,
and those that measure variability.

1.3 Measures of Location: The Sample Mean and Median

Measures of location are designed to provide the analyst with some quantitative
values of where the center, or some other location, of data is located. In Example
1.2, it appears as if the center of the nitrogen sample clearly exceeds that of the
no-nitrogen sample. One obvious and very useful measure is the sample mean.
The mean is simply a numerical average.

Definition 1.1: Suppose that the observations in a sample are x1, x2, . . . , xn. The sample mean,
denoted by x̄, is

x̄ =
n∑

i=1

xi

n
=

x1 + x2 + · · ·+ xn

n
.

There are other measures of central tendency that are discussed in detail in
future chapters. One important measure is the sample median. The purpose of
the sample median is to reflect the central tendency of the sample in such a way
that it is uninfluenced by extreme values or outliers.

Definition 1.2: Given that the observations in a sample are x1, x2, . . . , xn, arranged in increasing
order of magnitude, the sample median is

x̃ =

{
x(n+1)/2, if n is odd,
1
2 (xn/2 + xn/2+1), if n is even.

As an example, suppose the data set is the following: 1.7, 2.2, 3.9, 3.11, and
14.7. The sample mean and median are, respectively,

x̄ = 5.12, x̃ = 3.9.

Clearly, the mean is influenced considerably by the presence of the extreme obser-
vation, 14.7, whereas the median places emphasis on the true “center” of the data
set. In the case of the two-sample data set of Example 1.2, the two measures of
central tendency for the individual samples are

x̄ (no nitrogen) = 0.399 gram,

x̃ (no nitrogen) =
0.38 + 0.42

2
= 0.400 gram,

x̄ (nitrogen) = 0.565 gram,

x̃ (nitrogen) =
0.49 + 0.52

2
= 0.505 gram.

Clearly there is a difference in concept between the mean and median. It may
be of interest to the reader with an engineering background that the sample mean
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is the centroid of the data in a sample. In a sense, it is the point at which a
fulcrum can be placed to balance a system of “weights” which are the locations of
the individual data. This is shown in Figure 1.4 with regard to the with-nitrogen
sample.

0.25 0.30 0.35 0.40 0.45 0.50 0.55 0.60 0.65 0.70 0.75 0.80 0.85 0.90

x � 0.565

Figure 1.4: Sample mean as a centroid of the with-nitrogen stem weight.

In future chapters, the basis for the computation of x̄ is that of an estimate
of the population mean. As we indicated earlier, the purpose of statistical infer-
ence is to draw conclusions about population characteristics or parameters and
estimation is a very important feature of statistical inference.

The median and mean can be quite different from each other. Note, however,
that in the case of the stem weight data the sample mean value for no-nitrogen is
quite similar to the median value.

Other Measures of Locations

There are several other methods of quantifying the center of location of the data
in the sample. We will not deal with them at this point. For the most part,
alternatives to the sample mean are designed to produce values that represent
compromises between the mean and the median. Rarely do we make use of these
other measures. However, it is instructive to discuss one class of estimators, namely
the class of trimmed means. A trimmed mean is computed by “trimming away”
a certain percent of both the largest and the smallest set of values. For example,
the 10% trimmed mean is found by eliminating the largest 10% and smallest 10%
and computing the average of the remaining values. For example, in the case of
the stem weight data, we would eliminate the largest and smallest since the sample
size is 10 for each sample. So for the without-nitrogen group the 10% trimmed
mean is given by

x̄tr(10) =
0.32 + 0.37 + 0.47 + 0.43 + 0.36 + 0.42 + 0.38 + 0.43

8
= 0.39750,

and for the 10% trimmed mean for the with-nitrogen group we have

x̄tr(10) =
0.43 + 0.47 + 0.49 + 0.52 + 0.75 + 0.79 + 0.62 + 0.46

8
= 0.56625.

Note that in this case, as expected, the trimmed means are close to both the mean
and the median for the individual samples. The trimmed mean is, of course, more
insensitive to outliers than the sample mean but not as insensitive as the median.
On the other hand, the trimmed mean approach makes use of more information
than the sample median. Note that the sample median is, indeed, a special case of
the trimmed mean in which all of the sample data are eliminated apart from the
middle one or two observations.
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Exercises 13

Exercises

1.1 The following measurements were recorded for
the drying time, in hours, of a certain brand of latex
paint.

3.4 2.5 4.8 2.9 3.6
2.8 3.3 5.6 3.7 2.8
4.4 4.0 5.2 3.0 4.8

Assume that the measurements are a simple random
sample.

(a) What is the sample size for the above sample?

(b) Calculate the sample mean for these data.

(c) Calculate the sample median.

(d) Plot the data by way of a dot plot.

(e) Compute the 20% trimmed mean for the above
data set.

(f) Is the sample mean for these data more or less de-
scriptive as a center of location than the trimmed
mean?

1.2 According to the journal Chemical Engineering,
an important property of a fiber is its water ab-
sorbency. A random sample of 20 pieces of cotton fiber
was taken and the absorbency on each piece was mea-
sured. The following are the absorbency values:

18.71 21.41 20.72 21.81 19.29 22.43 20.17
23.71 19.44 20.50 18.92 20.33 23.00 22.85
19.25 21.77 22.11 19.77 18.04 21.12

(a) Calculate the sample mean and median for the
above sample values.

(b) Compute the 10% trimmed mean.

(c) Do a dot plot of the absorbency data.

(d) Using only the values of the mean, median, and
trimmed mean, do you have evidence of outliers in
the data?

1.3 A certain polymer is used for evacuation systems
for aircraft. It is important that the polymer be re-
sistant to the aging process. Twenty specimens of the
polymer were used in an experiment. Ten were as-
signed randomly to be exposed to an accelerated batch
aging process that involved exposure to high tempera-
tures for 10 days. Measurements of tensile strength of
the specimens were made, and the following data were
recorded on tensile strength in psi:

No aging: 227 222 218 217 225
218 216 229 228 221

Aging: 219 214 215 211 209
218 203 204 201 205

(a) Do a dot plot of the data.

(b) From your plot, does it appear as if the aging pro-
cess has had an effect on the tensile strength of this

polymer? Explain.

(c) Calculate the sample mean tensile strength of the
two samples.

(d) Calculate the median for both. Discuss the simi-
larity or lack of similarity between the mean and
median of each group.

1.4 In a study conducted by the Department of Me-
chanical Engineering at Virginia Tech, the steel rods
supplied by two different companies were compared.
Ten sample springs were made out of the steel rods
supplied by each company, and a measure of flexibility
was recorded for each. The data are as follows:

Company A: 9.3 8.8 6.8 8.7 8.5
6.7 8.0 6.5 9.2 7.0

Company B: 11.0 9.8 9.9 10.2 10.1
9.7 11.0 11.1 10.2 9.6

(a) Calculate the sample mean and median for the data
for the two companies.

(b) Plot the data for the two companies on the same
line and give your impression regarding any appar-
ent differences between the two companies.

1.5 Twenty adult males between the ages of 30 and
40 participated in a study to evaluate the effect of a
specific health regimen involving diet and exercise on
the blood cholesterol. Ten were randomly selected to
be a control group, and ten others were assigned to
take part in the regimen as the treatment group for a
period of 6 months. The following data show the re-
duction in cholesterol experienced for the time period
for the 20 subjects:

Control group: 7 3 −4 14 2
5 22 −7 9 5

Treatment group: −6 5 9 4 4
12 37 5 3 3

(a) Do a dot plot of the data for both groups on the
same graph.

(b) Compute the mean, median, and 10% trimmed
mean for both groups.

(c) Explain why the difference in means suggests one
conclusion about the effect of the regimen, while
the difference in medians or trimmed means sug-
gests a different conclusion.

1.6 The tensile strength of silicone rubber is thought
to be a function of curing temperature. A study was
carried out in which samples of 12 specimens of the rub-
ber were prepared using curing temperatures of 20◦C
and 45◦C. The data below show the tensile strength
values in megapascals.
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20◦C: 2.07 2.14 2.22 2.03 2.21 2.03
2.05 2.18 2.09 2.14 2.11 2.02

45◦C: 2.52 2.15 2.49 2.03 2.37 2.05
1.99 2.42 2.08 2.42 2.29 2.01

(a) Show a dot plot of the data with both low and high
temperature tensile strength values.

(b) Compute sample mean tensile strength for both
samples.

(c) Does it appear as if curing temperature has an
influence on tensile strength, based on the plot?
Comment further.

(d) Does anything else appear to be influenced by an
increase in curing temperature? Explain.

1.4 Measures of Variability

Sample variability plays an important role in data analysis. Process and product
variability is a fact of life in engineering and scientific systems: The control or
reduction of process variability is often a source of major difficulty. More and
more process engineers and managers are learning that product quality and, as
a result, profits derived from manufactured products are very much a function
of process variability. As a result, much of Chapters 9 through 15 deals with
data analysis and modeling procedures in which sample variability plays a major
role. Even in small data analysis problems, the success of a particular statistical
method may depend on the magnitude of the variability among the observations in
the sample. Measures of location in a sample do not provide a proper summary of
the nature of a data set. For instance, in Example 1.2 we cannot conclude that the
use of nitrogen enhances growth without taking sample variability into account.

While the details of the analysis of this type of data set are deferred to Chap-
ter 9, it should be clear from Figure 1.1 that variability among the no-nitrogen
observations and variability among the nitrogen observations are certainly of some
consequence. In fact, it appears that the variability within the nitrogen sample
is larger than that of the no-nitrogen sample. Perhaps there is something about
the inclusion of nitrogen that not only increases the stem height (x̄ of 0.565 gram
compared to an x̄ of 0.399 gram for the no-nitrogen sample) but also increases the
variability in stem height (i.e., renders the stem height more inconsistent).

As another example, contrast the two data sets below. Each contains two
samples and the difference in the means is roughly the same for the two samples, but
data set B seems to provide a much sharper contrast between the two populations
from which the samples were taken. If the purpose of such an experiment is to
detect differences between the two populations, the task is accomplished in the case
of data set B. However, in data set A the large variability within the two samples
creates difficulty. In fact, it is not clear that there is a distinction between the two
populations.

Data set A: X  X  X  X  X  X    0  X  X  0  0  X  X  X  0    0  0  0  0  0  0  0

Data set B: X  X  X  X  X  X  X  X  X  X  X      0  0  0  0  0  0  0  0  0  0  0

x
X

x
0

x
X

x
0
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Sample Range and Sample Standard Deviation

Just as there are many measures of central tendency or location, there are many
measures of spread or variability. Perhaps the simplest one is the sample range
Xmax −Xmin. The range can be very useful and is discussed at length in Chapter
17 on statistical quality control. The sample measure of spread that is used most
often is the sample standard deviation. We again let x1, x2, . . . , xn denote
sample values.

Definition 1.3: The sample variance, denoted by s2, is given by

s2 =
n∑

i=1

(xi − x̄)2

n− 1
.

The sample standard deviation, denoted by s, is the positive square root of
s2, that is,

s =
√
s2.

It should be clear to the reader that the sample standard deviation is, in fact,
a measure of variability. Large variability in a data set produces relatively large
values of (x − x̄)2 and thus a large sample variance. The quantity n − 1 is often
called the degrees of freedom associated with the variance estimate. In this
simple example, the degrees of freedom depict the number of independent pieces
of information available for computing variability. For example, suppose that we
wish to compute the sample variance and standard deviation of the data set (5,
17, 6, 4). The sample average is x̄ = 8. The computation of the variance involves

(5− 8)2 + (17− 8)2 + (6− 8)2 + (4− 8)2 = (−3)2 + 92 + (−2)2 + (−4)2.

The quantities inside parentheses sum to zero. In general,
n∑

i=1

(xi − x̄) = 0 (see

Exercise 1.16 on page 31). Then the computation of a sample variance does not
involve n independent squared deviations from the mean x̄. In fact, since the
last value of x − x̄ is determined by the initial n − 1 of them, we say that these
are n − 1 “pieces of information” that produce s2. Thus, there are n − 1 degrees
of freedom rather than n degrees of freedom for computing a sample variance.

Example 1.4: In an example discussed extensively in Chapter 10, an engineer is interested in
testing the “bias” in a pH meter. Data are collected on the meter by measuring
the pH of a neutral substance (pH = 7.0). A sample of size 10 is taken, with results
given by

7.07 7.00 7.10 6.97 7.00 7.03 7.01 7.01 6.98 7.08.

The sample mean x̄ is given by

x̄ =
7.07 + 7.00 + 7.10 + · · ·+ 7.08

10
= 7.0250.
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The sample variance s2 is given by

s2 =
1

9
[(7.07− 7.025)2 + (7.00− 7.025)2 + (7.10− 7.025)2

+ · · ·+ (7.08− 7.025)2] = 0.001939.

As a result, the sample standard deviation is given by

s =
√
0.001939 = 0.044.

So the sample standard deviation is 0.0440 with n− 1 = 9 degrees of freedom.

Units for Standard Deviation and Variance

It should be apparent from Definition 1.3 that the variance is a measure of the
average squared deviation from the mean x̄. We use the term average squared
deviation even though the definition makes use of a division by degrees of freedom
n − 1 rather than n. Of course, if n is large, the difference in the denominator
is inconsequential. As a result, the sample variance possesses units that are the
square of the units in the observed data whereas the sample standard deviation
is found in linear units. As an example, consider the data of Example 1.2. The
stem weights are measured in grams. As a result, the sample standard deviations
are in grams and the variances are measured in grams2. In fact, the individual
standard deviations are 0.0728 gram for the no-nitrogen case and 0.1867 gram for
the nitrogen group. Note that the standard deviation does indicate considerably
larger variability in the nitrogen sample. This condition was displayed in Figure
1.1.

Which Variability Measure Is More Important?

As we indicated earlier, the sample range has applications in the area of statistical
quality control. It may appear to the reader that the use of both the sample
variance and the sample standard deviation is redundant. Both measures reflect the
same concept in measuring variability, but the sample standard deviation measures
variability in linear units whereas the sample variance is measured in squared
units. Both play huge roles in the use of statistical methods. Much of what is
accomplished in the context of statistical inference involves drawing conclusions
about characteristics of populations. Among these characteristics are constants
which are called population parameters. Two important parameters are the
population mean and the population variance. The sample variance plays an
explicit role in the statistical methods used to draw inferences about the population
variance. The sample standard deviation has an important role along with the
sample mean in inferences that are made about the population mean. In general,
the variance is considered more in inferential theory, while the standard deviation
is used more in applications.
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Exercises

1.7 Consider the drying time data for Exercise 1.1
on page 13. Compute the sample variance and sample
standard deviation.

1.8 Compute the sample variance and standard devi-
ation for the water absorbency data of Exercise 1.2 on
page 13.

1.9 Exercise 1.3 on page 13 showed tensile strength
data for two samples, one in which specimens were ex-
posed to an aging process and one in which there was
no aging of the specimens.

(a) Calculate the sample variance as well as standard
deviation in tensile strength for both samples.

(b) Does there appear to be any evidence that aging
affects the variability in tensile strength? (See also
the plot for Exercise 1.3 on page 13.)

1.10 For the data of Exercise 1.4 on page 13, com-
pute both the mean and the variance in “flexibility”
for both company A and company B. Does there ap-
pear to be a difference in flexibility between company
A and company B?

1.11 Consider the data in Exercise 1.5 on page 13.
Compute the sample variance and the sample standard
deviation for both control and treatment groups.

1.12 For Exercise 1.6 on page 13, compute the sample
standard deviation in tensile strength for the samples
separately for the two temperatures. Does it appear as
if an increase in temperature influences the variability
in tensile strength? Explain.

1.5 Discrete and Continuous Data

Statistical inference through the analysis of observational studies or designed ex-
periments is used in many scientific areas. The data gathered may be discrete
or continuous, depending on the area of application. For example, a chemical
engineer may be interested in conducting an experiment that will lead to condi-
tions where yield is maximized. Here, of course, the yield may be in percent or
grams/pound, measured on a continuum. On the other hand, a toxicologist con-
ducting a combination drug experiment may encounter data that are binary in
nature (i.e., the patient either responds or does not).

Great distinctions are made between discrete and continuous data in the prob-
ability theory that allow us to draw statistical inferences. Often applications of
statistical inference are found when the data are count data. For example, an en-
gineer may be interested in studying the number of radioactive particles passing
through a counter in, say, 1 millisecond. Personnel responsible for the efficiency
of a port facility may be interested in the properties of the number of oil tankers
arriving each day at a certain port city. In Chapter 5, several distinct scenarios,
leading to different ways of handling data, are discussed for situations with count
data.

Special attention even at this early stage of the textbook should be paid to some
details associated with binary data. Applications requiring statistical analysis of
binary data are voluminous. Often the measure that is used in the analysis is
the sample proportion. Obviously the binary situation involves two categories.
If there are n units involved in the data and x is defined as the number that
fall into category 1, then n − x fall into category 2. Thus, x/n is the sample
proportion in category 1, and 1− x/n is the sample proportion in category 2. In
the biomedical application, 50 patients may represent the sample units, and if 20
out of 50 experienced an improvement in a stomach ailment (common to all 50)
after all were given the drug, then 20

50 = 0.4 is the sample proportion for which
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the drug was a success and 1 − 0.4 = 0.6 is the sample proportion for which the
drug was not successful. Actually the basic numerical measurement for binary
data is generally denoted by either 0 or 1. For example, in our medical example,
a successful result is denoted by a 1 and a nonsuccess a 0. As a result, the sample
proportion is actually a sample mean of the ones and zeros. For the successful
category,

x1 + x2 + · · ·+ x50

50
=

1 + 1 + 0 + · · ·+ 0 + 1

50
=

20

50
= 0.4.

What Kinds of Problems Are Solved in Binary Data Situations?

The kinds of problems facing scientists and engineers dealing in binary data are
not a great deal unlike those seen where continuous measurements are of interest.
However, different techniques are used since the statistical properties of sample
proportions are quite different from those of the sample means that result from
averages taken from continuous populations. Consider the example data in Ex-
ercise 1.6 on page 13. The statistical problem underlying this illustration focuses
on whether an intervention, say, an increase in curing temperature, will alter the
population mean tensile strength associated with the silicone rubber process. On
the other hand, in a quality control area, suppose an automobile tire manufacturer
reports that a shipment of 5000 tires selected randomly from the process results
in 100 of them showing blemishes. Here the sample proportion is 100

5000 = 0.02.
Following a change in the process designed to reduce blemishes, a second sample of
5000 is taken and 90 tires are blemished. The sample proportion has been reduced
to 90

5000 = 0.018. The question arises, “Is the decrease in the sample proportion
from 0.02 to 0.018 substantial enough to suggest a real improvement in the pop-
ulation proportion?” Both of these illustrations require the use of the statistical
properties of sample averages—one from samples from a continuous population,
and the other from samples from a discrete (binary) population. In both cases,
the sample mean is an estimate of a population parameter, a population mean
in the first illustration (i.e., mean tensile strength), and a population proportion
in the second case (i.e., proportion of blemished tires in the population). So here
we have sample estimates used to draw scientific conclusions regarding population
parameters. As we indicated in Section 1.3, this is the general theme in many
practical problems using statistical inference.

1.6 Statistical Modeling, Scientific Inspection, and Graphical
Diagnostics

Often the end result of a statistical analysis is the estimation of parameters of a
postulated model. This is natural for scientists and engineers since they often
deal in modeling. A statistical model is not deterministic but, rather, must entail
some probabilistic aspects. A model form is often the foundation of assumptions
that are made by the analyst. For example, in Example 1.2 the scientist may wish
to draw some level of distinction between the nitrogen and no-nitrogen populations
through the sample information. The analysis may require a certain model for
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the data, for example, that the two samples come from normal or Gaussian
distributions. See Chapter 6 for a discussion of the normal distribution.

Obviously, the user of statistical methods cannot generate sufficient informa-
tion or experimental data to characterize the population totally. But sets of data
are often used to learn about certain properties of the population. Scientists and
engineers are accustomed to dealing with data sets. The importance of character-
izing or summarizing the nature of collections of data should be obvious. Often a
summary of a collection of data via a graphical display can provide insight regard-
ing the system from which the data were taken. For instance, in Sections 1.1 and
1.3, we have shown dot plots.

In this section, the role of sampling and the display of data for enhancement of
statistical inference is explored in detail. We merely introduce some simple but
often effective displays that complement the study of statistical populations.

Scatter Plot

At times the model postulated may take on a somewhat complicated form. Con-
sider, for example, a textile manufacturer who designs an experiment where cloth
specimen that contain various percentages of cotton are produced. Consider the
data in Table 1.3.

Table 1.3: Tensile Strength

Cotton Percentage Tensile Strength

15 7, 7, 9, 8, 10
20 19, 20, 21, 20, 22
25 21, 21, 17, 19, 20
30 8, 7, 8, 9, 10

Five cloth specimens are manufactured for each of the four cotton percentages.
In this case, both the model for the experiment and the type of analysis used
should take into account the goal of the experiment and important input from
the textile scientist. Some simple graphics can shed important light on the clear
distinction between the samples. See Figure 1.5; the sample means and variability
are depicted nicely in the scatter plot. One possible goal of this experiment is
simply to determine which cotton percentages are truly distinct from the others.
In other words, as in the case of the nitrogen/no-nitrogen data, for which cotton
percentages are there clear distinctions between the populations or, more specifi-
cally, between the population means? In this case, perhaps a reasonable model is
that each sample comes from a normal distribution. Here the goal is very much
like that of the nitrogen/no-nitrogen data except that more samples are involved.
The formalism of the analysis involves notions of hypothesis testing discussed in
Chapter 10. Incidentally, this formality is perhaps not necessary in light of the
diagnostic plot. But does this describe the real goal of the experiment and hence
the proper approach to data analysis? It is likely that the scientist anticipates
the existence of a maximum population mean tensile strength in the range of cot-
ton concentration in the experiment. Here the analysis of the data should revolve
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around a different type of model, one that postulates a type of structure relating
the population mean tensile strength to the cotton concentration. In other words,
a model may be written

μt,c = β0 + β1C + β2C
2,

where μt,c is the population mean tensile strength, which varies with the amount
of cotton in the product C. The implication of this model is that for a fixed cotton
level, there is a population of tensile strength measurements and the population
mean is μt,c. This type of model, called a regression model, is discussed in
Chapters 11 and 12. The functional form is chosen by the scientist. At times
the data analysis may suggest that the model be changed. Then the data analyst
“entertains” a model that may be altered after some analysis is done. The use
of an empirical model is accompanied by estimation theory, where β0, β1, and
β2 are estimated by the data. Further, statistical inference can then be used to
determine model adequacy.

5

10

15

20

25

15 20 25 30

T
en

si
le

 S
tr

en
gt

h

Cotton Percentages

Figure 1.5: Scatter plot of tensile strength and cotton percentages.

Two points become evident from the two data illustrations here: (1) The type
of model used to describe the data often depends on the goal of the experiment;
and (2) the structure of the model should take advantage of nonstatistical scientific
input. A selection of a model represents a fundamental assumption upon which
the resulting statistical inference is based. It will become apparent throughout the
book how important graphics can be. Often, plots can illustrate information that
allows the results of the formal statistical inference to be better communicated to
the scientist or engineer. At times, plots or exploratory data analysis can teach
the analyst something not retrieved from the formal analysis. Almost any formal
analysis requires assumptions that evolve from the model of the data. Graphics can
nicely highlight violation of assumptions that would otherwise go unnoticed.
Throughout the book, graphics are used extensively to supplement formal data
analysis. The following sections reveal some graphical tools that are useful in
exploratory or descriptive data analysis.
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Stem-and-Leaf Plot

Statistical data, generated in large masses, can be very useful for studying the
behavior of the distribution if presented in a combined tabular and graphic display
called a stem-and-leaf plot.

To illustrate the construction of a stem-and-leaf plot, consider the data of Table
1.4, which specifies the “life” of 40 similar car batteries recorded to the nearest tenth
of a year. The batteries are guaranteed to last 3 years. First, split each observation
into two parts consisting of a stem and a leaf such that the stem represents the
digit preceding the decimal and the leaf corresponds to the decimal part of the
number. In other words, for the number 3.7, the digit 3 is designated the stem and
the digit 7 is the leaf. The four stems 1, 2, 3, and 4 for our data are listed vertically
on the left side in Table 1.5; the leaves are recorded on the right side opposite the
appropriate stem value. Thus, the leaf 6 of the number 1.6 is recorded opposite
the stem 1; the leaf 5 of the number 2.5 is recorded opposite the stem 2; and so
forth. The number of leaves recorded opposite each stem is summarized under the
frequency column.

Table 1.4: Car Battery Life

2.2 4.1 3.5 4.5 3.2 3.7 3.0 2.6
3.4 1.6 3.1 3.3 3.8 3.1 4.7 3.7
2.5 4.3 3.4 3.6 2.9 3.3 3.9 3.1
3.3 3.1 3.7 4.4 3.2 4.1 1.9 3.4
4.7 3.8 3.2 2.6 3.9 3.0 4.2 3.5

Table 1.5: Stem-and-Leaf Plot of Battery Life

Stem Leaf Frequency
1
2
3
4

69
25669
0011112223334445567778899
11234577

2
5
25
8

The stem-and-leaf plot of Table 1.5 contains only four stems and consequently
does not provide an adequate picture of the distribution. To remedy this problem,
we need to increase the number of stems in our plot. One simple way to accomplish
this is to write each stem value twice and then record the leaves 0, 1, 2, 3, and 4
opposite the appropriate stem value where it appears for the first time, and the
leaves 5, 6, 7, 8, and 9 opposite this same stem value where it appears for the second
time. This modified double-stem-and-leaf plot is illustrated in Table 1.6, where the
stems corresponding to leaves 0 through 4 have been coded by the symbol � and
the stems corresponding to leaves 5 through 9 by the symbol ·.

In any given problem, we must decide on the appropriate stem values. This
decision is made somewhat arbitrarily, although we are guided by the size of our
sample. Usually, we choose between 5 and 20 stems. The smaller the number of
data available, the smaller is our choice for the number of stems. For example, if
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the data consist of numbers from 1 to 21 representing the number of people in a
cafeteria line on 40 randomly selected workdays and we choose a double-stem-and-
leaf plot, the stems will be 0�, 0·, 1�, 1·, and 2� so that the smallest observation
1 has stem 0� and leaf 1, the number 18 has stem 1· and leaf 8, and the largest
observation 21 has stem 2� and leaf 1. On the other hand, if the data consist of
numbers from $18,800 to $19,600 representing the best possible deals on 100 new
automobiles from a certain dealership and we choose a single-stem-and-leaf plot,
the stems will be 188, 189, 190, . . . , 196 and the leaves will now each contain two
digits. A car that sold for $19,385 would have a stem value of 193 and the two-digit
leaf 85. Multiple-digit leaves belonging to the same stem are usually separated by
commas in the stem-and-leaf plot. Decimal points in the data are generally ignored
when all the digits to the right of the decimal represent the leaf. Such was the
case in Tables 1.5 and 1.6. However, if the data consist of numbers ranging from
21.8 to 74.9, we might choose the digits 2, 3, 4, 5, 6, and 7 as our stems so that a
number such as 48.3 would have a stem value of 4 and a leaf of 8.3.

Table 1.6: Double-Stem-and-Leaf Plot of Battery Life

Stem Leaf Frequency
1·
2�
2·
3�
3·
4�
4·

69
2
5669
001111222333444
5567778899
11234
577

2
1
4

15
10
5
3

The stem-and-leaf plot represents an effective way to summarize data. Another
way is through the use of the frequency distribution, where the data, grouped
into different classes or intervals, can be constructed by counting the leaves be-
longing to each stem and noting that each stem defines a class interval. In Table
1.5, the stem 1 with 2 leaves defines the interval 1.0–1.9 containing 2 observations;
the stem 2 with 5 leaves defines the interval 2.0–2.9 containing 5 observations; the
stem 3 with 25 leaves defines the interval 3.0–3.9 with 25 observations; and the
stem 4 with 8 leaves defines the interval 4.0–4.9 containing 8 observations. For the
double-stem-and-leaf plot of Table 1.6, the stems define the seven class intervals
1.5–1.9, 2.0–2.4, 2.5–2.9, 3.0–3.4, 3.5–3.9, 4.0–4.4, and 4.5–4.9 with frequencies 2,
1, 4, 15, 10, 5, and 3, respectively.

Histogram

Dividing each class frequency by the total number of observations, we obtain the
proportion of the set of observations in each of the classes. A table listing relative
frequencies is called a relative frequency distribution. The relative frequency
distribution for the data of Table 1.4, showing the midpoint of each class interval,
is given in Table 1.7.

The information provided by a relative frequency distribution in tabular form is
easier to grasp if presented graphically. Using the midpoint of each interval and the
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Table 1.7: Relative Frequency Distribution of Battery Life

Class Class Frequency, Relative
Interval Midpoint f Frequency
1.5–1.9 1.7 2 0.050
2.0–2.4 2.2 1 0.025
2.5–2.9 2.7 4 0.100
3.0–3.4 3.2 15 0.375
3.5–3.9 3.7 10 0.250
4.0–4.4 4.2 5 0.125
4.5–4.9 4.7 3 0.075

0.375

0.250

0.125
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Figure 1.6: Relative frequency histogram.

corresponding relative frequency, we construct a relative frequency histogram
(Figure 1.6).

Many continuous frequency distributions can be represented graphically by the
characteristic bell-shaped curve of Figure 1.7. Graphical tools such as what we see
in Figures 1.6 and 1.7 aid in the characterization of the nature of the population. In
Chapters 5 and 6 we discuss a property of the population called its distribution.
While a more rigorous definition of a distribution or probability distribution
will be given later in the text, at this point one can view it as what would be seen
in Figure 1.7 in the limit as the size of the sample becomes larger.

A distribution is said to be symmetric if it can be folded along a vertical axis
so that the two sides coincide. A distribution that lacks symmetry with respect to
a vertical axis is said to be skewed. The distribution illustrated in Figure 1.8(a)
is said to be skewed to the right since it has a long right tail and a much shorter
left tail. In Figure 1.8(b) we see that the distribution is symmetric, while in Figure
1.8(c) it is skewed to the left.

If we rotate a stem-and-leaf plot counterclockwise through an angle of 90◦,
we observe that the resulting columns of leaves form a picture that is similar
to a histogram. Consequently, if our primary purpose in looking at the data is to
determine the general shape or form of the distribution, it will seldom be necessary
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Figure 1.7: Estimating frequency distribution.

(a) (b) (c)

Figure 1.8: Skewness of data.

to construct a relative frequency histogram.

Box-and-Whisker Plot or Box Plot

Another display that is helpful for reflecting properties of a sample is the box-
and-whisker plot. This plot encloses the interquartile range of the data in a box
that has the median displayed within. The interquartile range has as its extremes
the 75th percentile (upper quartile) and the 25th percentile (lower quartile). In
addition to the box, “whiskers” extend, showing extreme observations in the sam-
ple. For reasonably large samples, the display shows center of location, variability,
and the degree of asymmetry.

In addition, a variation called a box plot can provide the viewer with infor-
mation regarding which observations may be outliers. Outliers are observations
that are considered to be unusually far from the bulk of the data. There are many
statistical tests that are designed to detect outliers. Technically, one may view
an outlier as being an observation that represents a “rare event” (there is a small
probability of obtaining a value that far from the bulk of the data). The concept
of outliers resurfaces in Chapter 12 in the context of regression analysis.
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The visual information in the box-and-whisker plot or box plot is not intended
to be a formal test for outliers. Rather, it is viewed as a diagnostic tool. While the
determination of which observations are outliers varies with the type of software
that is used, one common procedure is to use a multiple of the interquartile
range. For example, if the distance from the box exceeds 1.5 times the interquartile
range (in either direction), the observation may be labeled an outlier.

Example 1.5: Nicotine content was measured in a random sample of 40 cigarettes. The data are
displayed in Table 1.8.

Table 1.8: Nicotine Data for Example 1.5

1.09 1.92 2.31 1.79 2.28 1.74 1.47 1.97
0.85 1.24 1.58 2.03 1.70 2.17 2.55 2.11
1.86 1.90 1.68 1.51 1.64 0.72 1.69 1.85
1.82 1.79 2.46 1.88 2.08 1.67 1.37 1.93
1.40 1.64 2.09 1.75 1.63 2.37 1.75 1.69

1.0 1.5 2.0 2.5

Nicotine

Figure 1.9: Box-and-whisker plot for Example 1.5.

Figure 1.9 shows the box-and-whisker plot of the data, depicting the observa-
tions 0.72 and 0.85 as mild outliers in the lower tail, whereas the observation 2.55
is a mild outlier in the upper tail. In this example, the interquartile range is 0.365,
and 1.5 times the interquartile range is 0.5475. Figure 1.10, on the other hand,
provides a stem-and-leaf plot.

Example 1.6: Consider the data in Table 1.9, consisting of 30 samples measuring the thickness of
paint can “ears” (see the work by Hogg and Ledolter, 1992, in the Bibliography).
Figure 1.11 depicts a box-and-whisker plot for this asymmetric set of data. Notice
that the left block is considerably larger than the block on the right. The median
is 35. The lower quartile is 31, while the upper quartile is 36. Notice also that the
extreme observation on the right is farther away from the box than the extreme
observation on the left. There are no outliers in this data set.
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The decimal point is 1 digit(s) to the left of the |

7 | 2

8 | 5

9 |

10 | 9

11 |

12 | 4

13 | 7

14 | 07

15 | 18

16 | 3447899

17 | 045599

18 | 2568

19 | 0237

20 | 389

21 | 17

22 | 8

23 | 17

24 | 6

25 | 5

Figure 1.10: Stem-and-leaf plot for the nicotine data.

Table 1.9: Data for Example 1.6

Sample Measurements Sample Measurements
1 29 36 39 34 34 16 35 30 35 29 37
2 29 29 28 32 31 17 40 31 38 35 31
3 34 34 39 38 37 18 35 36 30 33 32
4 35 37 33 38 41 19 35 34 35 30 36
5 30 29 31 38 29 20 35 35 31 38 36
6 34 31 37 39 36 21 32 36 36 32 36
7 30 35 33 40 36 22 36 37 32 34 34
8 28 28 31 34 30 23 29 34 33 37 35
9 32 36 38 38 35 24 36 36 35 37 37
10 35 30 37 35 31 25 36 30 35 33 31
11 35 30 35 38 35 26 35 30 29 38 35
12 38 34 35 35 31 27 35 36 30 34 36
13 34 35 33 30 34 28 35 30 36 29 35
14 40 35 34 33 35 29 38 36 35 31 31
15 34 35 38 35 30 30 30 34 40 28 30

There are additional ways that box-and-whisker plots and other graphical dis-
plays can aid the analyst. Multiple samples can be compared graphically. Plots of
data can suggest relationships between variables. Graphs can aid in the detection
of anomalies or outlying observations in samples.

There are other types of graphical tools and plots that are used. These are
discussed in Chapter 8 after we introduce additional theoretical details.
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28 30 32 34 36 38 40

Paint

Figure 1.11: Box-and-whisker plot for thickness of paint can “ears.”

Other Distinguishing Features of a Sample

There are features of the distribution or sample other than measures of center
of location and variability that further define its nature. For example, while the
median divides the data (or distribution) into two parts, there are other measures
that divide parts or pieces of the distribution that can be very useful. Separation
is made into four parts by quartiles, with the third quartile separating the upper
quarter of the data from the rest, the second quartile being the median, and the first
quartile separating the lower quarter of the data from the rest. The distribution can
be even more finely divided by computing percentiles of the distribution. These
quantities give the analyst a sense of the so-called tails of the distribution (i.e.,
values that are relatively extreme, either small or large). For example, the 95th
percentile separates the highest 5% from the bottom 95%. Similar definitions
prevail for extremes on the lower side or lower tail of the distribution. The 1st
percentile separates the bottom 1% from the rest of the distribution. The concept
of percentiles will play a major role in much that will be covered in future chapters.

1.7 General Types of Statistical Studies: Designed
Experiment, Observational Study, and Retrospective Study

In the foregoing sections we have emphasized the notion of sampling from a pop-
ulation and the use of statistical methods to learn or perhaps affirm important
information about the population. The information sought and learned through
the use of these statistical methods can often be influential in decision making and
problem solving in many important scientific and engineering areas. As an illustra-
tion, Example 1.3 describes a simple experiment in which the results may provide
an aid in determining the kinds of conditions under which it is not advisable to use
a particular aluminum alloy that may have a dangerous vulnerability to corrosion.
The results may be of use not only to those who produce the alloy, but also to the
customer who may consider using it. This illustration, as well as many more that
appear in Chapters 13 through 15, highlights the concept of designing or control-
ling experimental conditions (combinations of coating conditions and humidity) of
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interest to learn about some characteristic or measurement (level of corrosion) that
results from these conditions. Statistical methods that make use of measures of
central tendency in the corrosion measure, as well as measures of variability, are
employed. As the reader will observe later in the text, these methods often lead to
a statistical model like that discussed in Section 1.6. In this case, the model may be
used to estimate (or predict) the corrosion measure as a function of humidity and
the type of coating employed. Again, in developing this kind of model, descriptive
statistics that highlight central tendency and variability become very useful.

The information supplied in Example 1.3 illustrates nicely the types of engi-
neering questions asked and answered by the use of statistical methods that are
employed through a designed experiment and presented in this text. They are

(i) What is the nature of the impact of relative humidity on the corrosion of the
aluminum alloy within the range of relative humidity in this experiment?

(ii) Does the chemical corrosion coating reduce corrosion levels and can the effect
be quantified in some fashion?

(iii) Is there interaction between coating type and relative humidity that impacts
their influence on corrosion of the alloy? If so, what is its interpretation?

What Is Interaction?

The importance of questions (i) and (ii) should be clear to the reader, as they
deal with issues important to both producers and users of the alloy. But what
about question (iii)? The concept of interaction will be discussed at length in
Chapters 14 and 15. Consider the plot in Figure 1.3. This is an illustration of
the detection of interaction between two factors in a simple designed experiment.
Note that the lines connecting the sample means are not parallel. Parallelism
would have indicated that the effect (seen as a result of the slope of the lines)
of relative humidity is the same, namely a negative effect, for both an uncoated
condition and the chemical corrosion coating. Recall that the negative slope implies
that corrosion becomes more pronounced as humidity rises. Lack of parallelism
implies an interaction between coating type and relative humidity. The nearly
“flat” line for the corrosion coating as opposed to a steeper slope for the uncoated
condition suggests that not only is the chemical corrosion coating beneficial (note
the displacement between the lines), but the presence of the coating renders the
effect of humidity negligible. Clearly all these questions are very important to the
effect of the two individual factors and to the interpretation of the interaction, if
it is present.

Statistical models are extremely useful in answering questions such as those
listed in (i), (ii), and (iii), where the data come from a designed experiment. But
one does not always have the luxury or resources to employ a designed experiment.
For example, there are many instances in which the conditions of interest to the
scientist or engineer cannot be implemented simply because the important factors
cannot be controlled. In Example 1.3, the relative humidity and coating type (or
lack of coating) are quite easy to control. This of course is the defining feature of
a designed experiment. In many fields, factors that need to be studied cannot be
controlled for any one of various reasons. Tight control as in Example 1.3 allows the
analyst to be confident that any differences found (for example, in corrosion levels)
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are due to the factors under control. As a second illustration, consider Exercise
1.6 on page 13. Suppose in this case 24 specimens of silicone rubber are selected
and 12 assigned to each of the curing temperature levels. The temperatures are
controlled carefully, and thus this is an example of a designed experiment with a
single factor being curing temperature. Differences found in the mean tensile
strength would be assumed to be attributed to the different curing temperatures.

What If Factors Are Not Controlled?

Suppose there are no factors controlled and no random assignment of fixed treat-
ments to experimental units and yet there is a need to glean information from a
data set. As an illustration, consider a study in which interest centers around the
relationship between blood cholesterol levels and the amount of sodium measured
in the blood. A group of individuals were monitored over time for both blood
cholesterol and sodium. Certainly some useful information can be gathered from
such a data set. However, it should be clear that there certainly can be no strict
control of blood sodium levels. Ideally, the subjects should be divided randomly
into two groups, with one group assigned a specific high level of blood sodium and
the other a specific low level of blood sodium. Obviously this cannot be done.
Clearly changes in cholesterol can be experienced because of changes in one of
a number of other factors that were not controlled. This kind of study, without
factor control, is called an observational study. Much of the time it involves a
situation in which subjects are observed across time.

Biological and biomedical studies are often by necessity observational studies.
However, observational studies are not confined to those areas. For example, con-
sider a study that is designed to determine the influence of ambient temperature on
the electric power consumed by a chemical plant. Clearly, levels of ambient temper-
ature cannot be controlled, and thus the data structure can only be a monitoring
of the data from the plant over time.

It should be apparent that the striking difference between a well-designed ex-
periment and observational studies is the difficulty in determination of true cause
and effect with the latter. Also, differences found in the fundamental response
(e.g., corrosion levels, blood cholesterol, plant electric power consumption) may
be due to other underlying factors that were not controlled. Ideally, in a designed
experiment the nuisance factors would be equalized via the randomization process.
Certainly changes in blood cholesterol could be due to fat intake, exercise activity,
and so on. Electric power consumption could be affected by the amount of product
produced or even the purity of the product produced.

Another often ignored disadvantage of an observational study when compared
to carefully designed experiments is that, unlike the latter, observational studies
are at the mercy of nature, environmental or other uncontrolled circumstances
that impact the ranges of factors of interest. For example, in the biomedical study
regarding the influence of blood sodium levels on blood cholesterol, it is possible
that there is indeed a strong influence but the particular data set used did not
involve enough observed variation in sodium levels because of the nature of the
subjects chosen. Of course, in a designed experiment, the analyst chooses and
controls ranges of factors.
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A third type of statistical study which can be very useful but has clear dis-
advantages when compared to a designed experiment is a retrospective study.
This type of study uses strictly historical data, data taken over a specific period
of time. One obvious advantage of retrospective data is that there is reduced cost
in collecting the data. However, as one might expect, there are clear disadvantages.

(i) Validity and reliability of historical data are often in doubt.

(ii) If time is an important aspect of the structure of the data, there may be data
missing.

(iii) There may be errors in collection of the data that are not known.

(iv) Again, as in the case of observational data, there is no control on the ranges
of the measured variables (the factors in a study). Indeed, the ranges found
in historical data may not be relevant for current studies.

In Section 1.6, some attention was given to modeling of relationships among vari-
ables. We introduced the notion of regression analysis, which is covered in Chapters
11 and 12 and is illustrated as a form of data analysis for designed experiments
discussed in Chapters 14 and 15. In Section 1.6, a model relating population mean
tensile strength of cloth to percentages of cotton was used for illustration, where
20 specimens of cloth represented the experimental units. In that case, the data
came from a simple designed experiment where the individual cotton percentages
were selected by the scientist.

Often both observational data and retrospective data are used for the purpose
of observing relationships among variables through model-building procedures dis-
cussed in Chapters 11 and 12. While the advantages of designed experiments
certainly apply when the goal is statistical model building, there are many areas
in which designing of experiments is not possible. Thus, observational or historical
data must be used. We refer here to a historical data set that is found in Exercise
12.5 on page 450. The goal is to build a model that will result in an equation
or relationship that relates monthly electric power consumed to average ambient
temperature x1, the number of days in the month x2, the average product purity
x3, and the tons of product produced x4. The data are the past year’s historical
data.

Exercises

1.13 A manufacturer of electronic components is in-
terested in determining the lifetime of a certain type
of battery. A sample, in hours of life, is as follows:

123, 116, 122, 110, 175, 126, 125, 111, 118, 117.

(a) Find the sample mean and median.

(b) What feature in this data set is responsible for the
substantial difference between the two?

1.14 A tire manufacturer wants to determine the in-
ner diameter of a certain grade of tire. Ideally, the
diameter would be 570 mm. The data are as follows:

572, 572, 573, 568, 569, 575, 565, 570.

(a) Find the sample mean and median.

(b) Find the sample variance, standard deviation, and
range.

(c) Using the calculated statistics in parts (a) and (b),
can you comment on the quality of the tires?

1.15 Five independent coin tosses result in
HHHHH. It turns out that if the coin is fair the
probability of this outcome is (1/2)5 = 0.03125. Does
this produce strong evidence that the coin is not fair?
Comment and use the concept of P-value discussed in
Section 1.1.
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1.16 Show that the n pieces of information in
n∑

i=1

(xi − x̄)2 are not independent; that is, show that

n∑
i=1

(xi − x̄) = 0.

1.17 A study of the effects of smoking on sleep pat-
terns is conducted. The measure observed is the time,
in minutes, that it takes to fall asleep. These data are
obtained:

Smokers: 69.3 56.0 22.1 47.6
53.2 48.1 52.7 34.4
60.2 43.8 23.2 13.8

Nonsmokers: 28.6 25.1 26.4 34.9
29.8 28.4 38.5 30.2
30.6 31.8 41.6 21.1
36.0 37.9 13.9

(a) Find the sample mean for each group.

(b) Find the sample standard deviation for each group.

(c) Make a dot plot of the data sets A and B on the
same line.

(d) Comment on what kind of impact smoking appears
to have on the time required to fall asleep.

1.18 The following scores represent the final exami-
nation grades for an elementary statistics course:

23 60 79 32 57 74 52 70 82
36 80 77 81 95 41 65 92 85
55 76 52 10 64 75 78 25 80
98 81 67 41 71 83 54 64 72
88 62 74 43 60 78 89 76 84
48 84 90 15 79 34 67 17 82
69 74 63 80 85 61

(a) Construct a stem-and-leaf plot for the examination
grades in which the stems are 1, 2, 3, . . . , 9.

(b) Construct a relative frequency histogram, draw an
estimate of the graph of the distribution, and dis-
cuss the skewness of the distribution.

(c) Compute the sample mean, sample median, and
sample standard deviation.

1.19 The following data represent the length of life in
years, measured to the nearest tenth, of 30 similar fuel
pumps:

2.0 3.0 0.3 3.3 1.3 0.4
0.2 6.0 5.5 6.5 0.2 2.3
1.5 4.0 5.9 1.8 4.7 0.7
4.5 0.3 1.5 0.5 2.5 5.0
1.0 6.0 5.6 6.0 1.2 0.2

(a) Construct a stem-and-leaf plot for the life in years
of the fuel pumps, using the digit to the left of the
decimal point as the stem for each observation.

(b) Set up a relative frequency distribution.

(c) Compute the sample mean, sample range, and sam-
ple standard deviation.

1.20 The following data represent the length of life,
in seconds, of 50 fruit flies subject to a new spray in a
controlled laboratory experiment:

17 20 10 9 23 13 12 19 18 24
12 14 6 9 13 6 7 10 13 7
16 18 8 13 3 32 9 7 10 11
13 7 18 7 10 4 27 19 16 8
7 10 5 14 15 10 9 6 7 15

(a) Construct a double-stem-and-leaf plot for the life
span of the fruit flies using the stems 0�, 0·, 1�, 1·,
2�, 2·, and 3� such that stems coded by the symbols
� and · are associated, respectively, with leaves 0
through 4 and 5 through 9.

(b) Set up a relative frequency distribution.

(c) Construct a relative frequency histogram.

(d) Find the median.

1.21 The lengths of power failures, in minutes, are
recorded in the following table.

22 18 135 15 90 78 69 98 102
83 55 28 121 120 13 22 124 112
70 66 74 89 103 24 21 112 21
40 98 87 132 115 21 28 43 37
50 96 118 158 74 78 83 93 95

(a) Find the sample mean and sample median of the
power-failure times.

(b) Find the sample standard deviation of the power-
failure times.

1.22 The following data are the measures of the di-
ameters of 36 rivet heads in 1/100 of an inch.

6.72 6.77 6.82 6.70 6.78 6.70 6.62 6.75
6.66 6.66 6.64 6.76 6.73 6.80 6.72 6.76
6.76 6.68 6.66 6.62 6.72 6.76 6.70 6.78
6.76 6.67 6.70 6.72 6.74 6.81 6.79 6.78
6.66 6.76 6.76 6.72

(a) Compute the sample mean and sample standard
deviation.

(b) Construct a relative frequency histogram of the
data.

(c) Comment on whether or not there is any clear in-
dication that the sample came from a population
that has a bell-shaped distribution.

1.23 The hydrocarbon emissions at idling speed in
parts per million (ppm) for automobiles of 1980 and
1990 model years are given for 20 randomly selected
cars.
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1980 models:
141 359 247 940 882 494 306 210 105 880
200 223 188 940 241 190 300 435 241 380

1990 models:
140 160 20 20 223 60 20 95 360 70
220 400 217 58 235 380 200 175 85 65

(a) Construct a dot plot as in Figure 1.1.

(b) Compute the sample means for the two years and
superimpose the two means on the plots.

(c) Comment on what the dot plot indicates regarding
whether or not the population emissions changed
from 1980 to 1990. Use the concept of variability
in your comments.

1.24 The following are historical data on staff salaries
(dollars per pupil) for 30 schools sampled in the eastern
part of the United States in the early 1970s.

3.79 2.99 2.77 2.91 3.10 1.84 2.52 3.22
2.45 2.14 2.67 2.52 2.71 2.75 3.57 3.85
3.36 2.05 2.89 2.83 3.13 2.44 2.10 3.71
3.14 3.54 2.37 2.68 3.51 3.37

(a) Compute the sample mean and sample standard
deviation.

(b) Construct a relative frequency histogram of the
data.

(c) Construct a stem-and-leaf display of the data.

1.25 The following data set is related to that in Ex-
ercise 1.24. It gives the percentages of the families that
are in the upper income level, for the same individual
schools in the same order as in Exercise 1.24.

72.2 31.9 26.5 29.1 27.3 8.6 22.3 26.5
20.4 12.8 25.1 19.2 24.1 58.2 68.1 89.2
55.1 9.4 14.5 13.9 20.7 17.9 8.5 55.4
38.1 54.2 21.5 26.2 59.1 43.3

(a) Calculate the sample mean.

(b) Calculate the sample median.

(c) Construct a relative frequency histogram of the
data.

(d) Compute the 10% trimmed mean. Compare with
the results in (a) and (b) and comment.

1.26 Suppose it is of interest to use the data sets in
Exercises 1.24 and 1.25 to derive a model that would
predict staff salaries as a function of percentage of fam-
ilies in a high income level for current school systems.
Comment on any disadvantage in carrying out this type
of analysis.

1.27 A study is done to determine the influence of
the wear, y, of a bearing as a function of the load, x,
on the bearing. A designed experiment is used for this
study. Three levels of load were used, 700 lb, 1000 lb,
and 1300 lb. Four specimens were used at each level,

and the sample means were, respectively, 210, 325, and
375.

(a) Plot average wear against load.

(b) From the plot in (a), does it appear as if a relation-
ship exists between wear and load?

(c) Suppose we look at the individual wear values for
each of the four specimens at each load level (see
the data that follow). Plot the wear results for all
specimens against the three load values.

(d) From your plot in (c), does it appear as if a clear
relationship exists? If your answer is different from
that in (b), explain why.

x

700 1000 1300
y1 145 250 150
y2 105 195 180
y3 260 375 420
y4 330 480 750

ȳ1 = 210 ȳ2 = 325 ȳ3 = 375

1.28 Many manufacturing companies in the United
States and abroad use molded parts as components of
a process. Shrinkage is often a major problem. Thus, a
molded die for a part is built larger than nominal size
to allow for part shrinkage. In an injection molding
study it is known that the shrinkage is influenced by
many factors, among which are the injection velocity
in ft/sec and mold temperature in ◦C. The following
two data sets show the results of a designed experiment
in which injection velocity was held at two levels (low
and high) and mold temperature was held constant at
a low level. The shrinkage is measured in cm × 104.

Shrinkage values at low injection velocity:

72.68 72.62 72.58 72.48 73.07
72.55 72.42 72.84 72.58 72.92

Shrinkage values at high injection velocity:

71.62 71.68 71.74 71.48 71.55
71.52 71.71 71.56 71.70 71.50

(a) Construct a dot plot of both data sets on the same
graph. Indicate on the plot both shrinkage means,
that for low injection velocity and high injection
velocity.

(b) Based on the graphical results in (a), using the lo-
cation of the two means and your sense of variabil-
ity, what do you conclude regarding the effect of
injection velocity on shrinkage at low mold tem-
perature?

1.29 Use the data in Exercise 1.24 to construct a box
plot.

1.30 Below are the lifetimes, in hours, of fifty 40-watt,
110-volt internally frosted incandescent lamps, taken
from forced life tests:
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919 1196 785 1126 936 918
1156 920 948 1067 1092 1162
1170 929 950 905 972 1035
1045 855 1195 1195 1340 1122
938 970 1237 956 1102 1157
978 832 1009 1157 1151 1009
765 958 902 1022 1333 811

1217 1085 896 958 1311 1037
702 923

Construct a box plot for these data.

1.31 Consider the situation of Exercise 1.28. But now
use the following data set, in which shrinkage is mea-
sured once again at low injection velocity and high in-
jection velocity. However, this time the mold temper-
ature is raised to a high level and held constant.

Shrinkage values at low injection velocity:

76.20 76.09 75.98 76.15 76.17
75.94 76.12 76.18 76.25 75.82

Shrinkage values at high injection velocity:

93.25 93.19 92.87 93.29 93.37
92.98 93.47 93.75 93.89 91.62

(a) As in Exercise 1.28, construct a dot plot with both
data sets on the same graph and identify both
means (i.e., mean shrinkage for low injection ve-
locity and for high injection velocity).

(b) As in Exercise 1.28, comment on the influence of
injection velocity on shrinkage for high mold tem-
perature. Take into account the position of the two
means and the variability around each mean.

(c) Compare your conclusion in (b) with that in (b)
of Exercise 1.28 in which mold temperature was
held at a low level. Would you say that there is
an interaction between injection velocity and mold
temperature? Explain.

1.32 Use the results of Exercises 1.28 and 1.31 to cre-
ate a plot that illustrates the interaction evident from
the data. Use the plot in Figure 1.3 in Example 1.3 as
a guide. Could the type of information found in Exer-
cises 1.28 and 1.31 have been found in an observational
study in which there was no control on injection veloc-
ity and mold temperature by the analyst? Explain why
or why not.

1.33 Group Project: Collect the shoe size of every-
one in the class. Use the sample means and variances
and the types of plots presented in this chapter to sum-
marize any features that draw a distinction between the
distributions of shoe sizes for males and females. Do
the same for the height of everyone in the class.


	Cover
	Title Page
	Copyright Page
	Contents
	Preface
	Acknowledgments
	1 Introduction to Statistics and Data Analysis
	1.1 Overview: Statistical Inference, Samples, Populations, and the Role of Probability
	1.2 Sampling Procedures; Collection of Data
	1.3 Measures of Location: The Sample Mean and Median
	Exercises

	1.4 Measures of Variability
	Exercises

	1.5 Discrete and Continuous Data
	1.6 Statistical Modeling, Scientific Inspection, and Graphical Diagnostics
	1.7 General Types of Statistical Studies: Designed Experiment, Observational Study, and Retrospective Study
	Exercises


	2 Probability
	2.1 Sample Space
	2.2 Events
	Exercises

	2.3 Counting Sample Points
	Exercises

	2.4 Probability of an Event
	2.5 Additive Rules
	Exercises

	2.6 Conditional Probability, Independence, and the Product Rule
	Exercises

	2.7 Bayes’ Rule
	Exercises
	Review Exercises

	2.8 Potential Misconceptions and Hazards; Relationship to Material in Other Chapters

	3 Random Variables and Probability Distributions
	3.1 Concept of a Random Variable
	3.2 Discrete Probability Distributions
	3.3 Continuous Probability Distributions
	Exercises

	3.4 Joint Probability Distributions
	Exercises
	Review Exercises

	3.5 Potential Misconceptions and Hazards; Relationship to Material in Other Chapters

	4 Mathematical Expectation
	4.1 Mean of a Random Variable
	Exercises

	4.2 Variance and Covariance of Random Variables
	Exercises

	4.3 Means and Variances of Linear Combinations of Random Variables
	4.4 Chebyshev’s Theorem
	Exercises
	Review Exercises

	4.5 Potential Misconceptions and Hazards; Relationship to Material in Other Chapters

	5 Some Discrete Probability Distributions
	5.1 Introduction and Motivation
	5.2 Binomial and Multinomial Distributions
	Exercises

	5.3 Hypergeometric Distribution
	Exercises

	5.4 Negative Binomial and Geometric Distributions
	5.5 Poisson Distribution and the Poisson Process
	Exercises
	Review Exercises

	5.6 Potential Misconceptions and Hazards; Relationship to Material in Other Chapters

	6 Some Continuous Probability Distributions
	6.1 Continuous Uniform Distribution
	6.2 Normal Distribution
	6.3 Areas under the Normal Curve
	6.4 Applications of the Normal Distribution
	Exercises

	6.5 Normal Approximation to the Binomial
	Exercises

	6.6 Gamma and Exponential Distributions
	6.7 Chi-Squared Distribution
	6.8 Beta Distribution
	6.9 Lognormal Distribution
	6.10 Weibull Distribution (Optional)
	Exercises
	Review Exercises

	6.11 Potential Misconceptions and Hazards; Relationship to Material in Other Chapters

	7 Functions of Random Variables (Optional)
	7.1 Introduction
	7.2 Transformations of Variables
	7.3 Moments and Moment-Generating Functions
	Exercises


	8 Fundamental Sampling Distributions and Data Descriptions
	8.1 Random Sampling
	8.2 Some Important Statistics
	Exercises

	8.3 Sampling Distributions
	8.4 Sampling Distribution of Means and the Central Limit Theorem
	Exercises

	8.5 Sampling Distribution of S²
	8.6 t-Distribution
	8.7 F-Distribution
	8.8 Quantile and Probability Plots
	Exercises
	Review Exercises

	8.9 Potential Misconceptions and Hazards; Relationship to Material in Other Chapters

	9 One- and Two-Sample Estimation Problems
	9.1 Introduction
	9.2 Statistical Inference
	9.3 Classical Methods of Estimation
	9.4 Single Sample: Estimating the Mean
	9.5 Standard Error of a Point Estimate
	9.6 Prediction Intervals
	9.7 Tolerance Limits
	Exercises

	9.8 Two Samples: Estimating the Difference between Two Means
	9.9 Paired Observations
	Exercises

	9.10 Single Sample: Estimating a Proportion
	9.11 Two Samples: Estimating the Difference between Two Proportions
	Exercises

	9.12 Single Sample: Estimating the Variance
	9.13 Two Samples: Estimating the Ratio of Two Variances
	Exercises

	9.14 Maximum Likelihood Estimation (Optional)
	Exercises
	Review Exercises

	9.15 Potential Misconceptions and Hazards; Relationship to Material in Other Chapters

	10 One- and Two-Sample Tests of Hypotheses
	10.1 Statistical Hypotheses: General Concepts
	10.2 Testing a Statistical Hypothesis
	10.3 The Use of P-Values for Decision Making in Testing Hypotheses
	Exercises

	10.4 Single Sample: Tests Concerning a Single Mean
	10.5 Two Samples: Tests on Two Means
	10.6 Choice of Sample Size for Testing Means
	10.7 Graphical Methods for Comparing Means
	Exercises

	10.8 One Sample: Test on a Single Proportion
	10.9 Two Samples: Tests on Two Proportions
	Exercises

	10.10 One- and Two-Sample Tests Concerning Variances
	Exercises

	10.11 Goodness-of-Fit Test
	10.12 Test for Independence (Categorical Data)
	10.13 Test for Homogeneity
	10.14 Two-Sample Case Study
	Exercises
	Review Exercises

	10.15 Potential Misconceptions and Hazards; Relationship to Material in Other Chapters

	11 Simple Linear Regression and Correlation
	11.1 Introduction to Linear Regression
	11.2 The Simple Linear Regression Model
	11.3 Least Squares and the Fitted Model
	Exercises

	11.4 Properties of the Least Squares Estimators
	11.5 Inferences Concerning the Regression Coefficients
	11.6 Prediction
	Exercises

	11.7 Choice of a Regression Model
	11.8 Analysis-of-Variance Approach
	11.9 Test for Linearity of Regression: Data with Repeated Observations
	Exercises

	11.10 Data Plots and Transformations
	11.11 Simple Linear Regression Case Study
	11.12 Correlation
	Exercises
	Review Exercises

	11.13 Potential Misconceptions and Hazards; Relationship to Material in Other Chapters

	12 Multiple Linear Regression and Certain Nonlinear Regression Models
	12.1 Introduction
	12.2 Estimating the Coefficients
	12.3 Linear Regression Model Using Matrices
	Exercises

	12.4 Properties of the Least Squares Estimators
	12.5 Inferences in Multiple Linear Regression
	Exercises

	12.6 Choice of a Fitted Model through Hypothesis Testing
	12.7 Special Case of Orthogonality (Optional)
	Exercises

	12.8 Categorical or Indicator Variables
	Exercises

	12.9 Sequential Methods for Model Selection
	12.10 Study of Residuals and Violation of Assumptions (Model Checking)
	12.11 Cross Validation, Cp, and Other Criteria for Model Selection 
	Exercises

	12.12 Special Nonlinear Models for Nonideal Conditions
	Exercises
	Review Exercises

	12.13 Potential Misconceptions and Hazards; Relationship to Material in Other Chapters

	13 One-Factor Experiments: General
	13.1 Analysis-of-Variance Technique
	13.2 The Strategy of Experimental Design
	13.3 One-Way Analysis of Variance: Completely Randomized Design (One-Way ANOVA)
	13.4 Tests for the Equality of Several Variances
	Exercises

	13.5 Single-Degree-of-Freedom Comparisons
	13.6 Multiple Comparisons
	Exercises

	13.7 Comparing a Set of Treatments in Blocks
	13.8 Randomized Complete Block Designs
	13.9 Graphical Methods and Model Checking
	13.10 Data Transformations in Analysis of Variance
	Exercises

	13.11 Random Effects Models
	13.12 Case Study
	Exercises
	Review Exercises

	13.13 Potential Misconceptions and Hazards; Relationship to Material in Other Chapters

	14 Factorial Experiments (Two or More Factors)
	14.1 Introduction
	14.2 Interaction in the Two-Factor Experiment
	14.3 Two-Factor Analysis of Variance
	Exercises

	14.4 Three-Factor Experiments
	Exercises

	14.5 Factorial Experiments for Random Effects and Mixed Models
	Exercises
	Review Exercises

	14.6 Potential Misconceptions and Hazards; Relationship to Material in Other Chapters

	15 2k Factorial Experiments and Fractions 
	15.1 Introduction
	15.2 The 2k Factorial: Calculation of Effects and Analysis of Variance 
	15.3 Nonreplicated 2k Factorial Experiment 
	Exercises

	15.4 Factorial Experiments in a Regression Setting
	15.5 The Orthogonal Design
	Exercises

	15.6 Fractional Factorial Experiments
	15.7 Analysis of Fractional Factorial Experiments
	Exercises

	15.8 Higher Fractions and Screening Designs
	15.9 Construction of Resolution III and IV Designs with 8, 16, and 32 Design Points
	15.10 Other Two-Level Resolution III Designs; The Plackett-Burman Designs
	15.11 Introduction to Response Surface Methodology
	15.12 Robust Parameter Design
	Exercises
	Review Exercises

	15.13 Potential Misconceptions and Hazards; Relationship to Material in Other Chapters

	16 Nonparametric Statistics
	16.1 Nonparametric Tests
	16.2 Signed-Rank Test
	Exercises

	16.3 Wilcoxon Rank-Sum Test
	16.4 Kruskal-Wallis Test
	Exercises

	16.5 Runs Test
	16.6 Tolerance Limits
	16.7 Rank Correlation Coefficient
	Exercises
	Review Exercises


	17 Statistical Quality Control
	17.1 Introduction
	17.2 Nature of the Control Limits
	17.3 Purposes of the Control Chart
	17.4 Control Charts for Variables
	17.5 Control Charts for Attributes
	17.6 Cusum Control Charts
	Review Exercises


	18 Bayesian Statistics
	18.1 Bayesian Concepts
	18.2 Bayesian Inferences
	18.3 Bayes Estimates Using Decision Theory Framework
	Exercises


	Bibliography
	Appendix A: Statistical Tables and Proofs
	Appendix B: Answers to Odd-Numbered Non-Review Exercises
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X


