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Definition 4.4: Let X and Y be random variables with joint probability distribution f(x, y). The
covariance of X and Y is

σXY = E[(X − μX)(Y − μY )] =
∑
x

∑
y

(x− μX)(y − μy)f(x, y)

if X and Y are discrete, and

σXY = E[(X − μX)(Y − μY )] =

∫ ∞

−∞

∫ ∞

−∞
(x− μX)(y − μy)f(x, y) dx dy

if X and Y are continuous.

The covariance between two random variables is a measure of the nature of the
association between the two. If large values of X often result in large values of Y
or small values of X result in small values of Y , positive X−μX will often result in
positive Y −μY and negative X−μX will often result in negative Y −μY . Thus, the
product (X − μX)(Y − μY ) will tend to be positive. On the other hand, if large X
values often result in small Y values, the product (X−μX)(Y −μY ) will tend to be
negative. The sign of the covariance indicates whether the relationship between two
dependent random variables is positive or negative. WhenX and Y are statistically
independent, it can be shown that the covariance is zero (see Corollary 4.5). The
converse, however, is not generally true. Two variables may have zero covariance
and still not be statistically independent. Note that the covariance only describes
the linear relationship between two random variables. Therefore, if a covariance
between X and Y is zero, X and Y may have a nonlinear relationship, which means
that they are not necessarily independent.
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The alternative and preferred formula for σXY is stated by Theorem 4.4.

Theorem 4.4: The covariance of two random variables X and Y with means μX and μY , respec-
tively, is given by

σXY = E(XY )− μXμY .

Proof : For the discrete case, we can write

σXY =
∑
x

∑
y

(x− μX)(y − μY )f(x, y)

=
∑
x

∑
y

xyf(x, y)− μX

∑
x

∑
y

yf(x, y)

− μY

∑
x

∑
y

xf(x, y) + μXμY

∑
x

∑
y

f(x, y).

Since

μX =
∑
x

xf(x, y), μY =
∑
y

yf(x, y), and
∑
x

∑
y

f(x, y) = 1

for any joint discrete distribution, it follows that

σXY = E(XY )− μXμY − μY μX + μXμY = E(XY )− μXμY .

For the continuous case, the proof is identical with summations replaced by inte-
grals.

Example 4.13: Example 3.14 on page 95 describes a situation involving the number of blue refills
X and the number of red refills Y . Two refills for a ballpoint pen are selected at
random from a certain box, and the following is the joint probability distribution:

x
f(x, y) 0 1 2 h(y)

0 3
28

9
28

3
28

15
28

y 1 3
14

3
14 0 3

7

2 1
28 0 0 1

28

g(x) 5
14

15
28

3
28 1

Find the covariance of X and Y .
Solution : From Example 4.6, we see that E(XY ) = 3/14. Now

μX =
2∑

x=0

xg(x) = (0)

(
5

14

)
+ (1)

(
15

28

)
+ (2)

(
3

28

)
=

3

4
,

and

μY =
2∑

y=0

yh(y) = (0)

(
15

28

)
+ (1)

(
3

7

)
+ (2)

(
1

28

)
=

1

2
.
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Therefore,

σXY = E(XY )− μXμY =
3

14
−
(
3

4

)(
1

2

)
= − 9

56
.

Example 4.14: The fraction X of male runners and the fraction Y of female runners who compete
in marathon races are described by the joint density function

f(x, y) =

{
8xy, 0 ≤ y ≤ x ≤ 1,

0, elsewhere.

Find the covariance of X and Y .
Solution : We first compute the marginal density functions. They are

g(x) =

{
4x3, 0 ≤ x ≤ 1,

0, elsewhere,

and

h(y) =

{
4y(1− y2), 0 ≤ y ≤ 1,

0, elsewhere.

From these marginal density functions, we compute

μX = E(X) =

∫ 1

0

4x4 dx =
4

5
and μY =

∫ 1

0

4y2(1− y2) dy =
8

15
.

From the joint density function given above, we have

E(XY ) =

∫ 1

0

∫ 1

y

8x2y2 dx dy =
4

9
.

Then

σXY = E(XY )− μXμY =
4

9
−
(
4

5

)(
8

15

)
=

4

225
.

Although the covariance between two random variables does provide informa-
tion regarding the nature of the relationship, the magnitude of σXY does not indi-
cate anything regarding the strength of the relationship, since σXY is not scale-free.
Its magnitude will depend on the units used to measure both X and Y . There is a
scale-free version of the covariance called the correlation coefficient that is used
widely in statistics.

Definition 4.5: Let X and Y be random variables with covariance σXY and standard deviations
σX and σY , respectively. The correlation coefficient of X and Y is

ρXY =
σXY

σXσY

.

It should be clear to the reader that ρXY is free of the units of X and Y . The
correlation coefficient satisfies the inequality −1 ≤ ρXY ≤ 1. It assumes a value of
zero when σXY = 0. Where there is an exact linear dependency, say Y ≡ a+ bX,
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ρXY = 1 if b > 0 and ρXY = −1 if b < 0. (See Exercise 4.48.) The correlation
coefficient is the subject of more discussion in Chapter 12, where we deal with
linear regression.

Example 4.15: Find the correlation coefficient between X and Y in Example 4.13.
Solution : Since

E(X2) = (02)

(
5

14

)
+ (12)

(
15

28

)
+ (22)

(
3

28

)
=

27

28

and

E(Y 2) = (02)

(
15

28

)
+ (12)

(
3

7

)
+ (22)

(
1

28

)
=

4

7
,

we obtain

σ2
X =

27

28
−
(
3

4

)2

=
45

112
and σ2

Y =
4

7
−
(
1

2

)2

=
9

28
.

Therefore, the correlation coefficient between X and Y is

ρXY =
σXY

σXσY
=

−9/56√
(45/112)(9/28)

= − 1√
5
.

Example 4.16: Find the correlation coefficient of X and Y in Example 4.14.
Solution : Because

E(X2) =

∫ 1

0

4x5 dx =
2

3
and E(Y 2) =

∫ 1

0

4y3(1− y2) dy = 1− 2

3
=

1

3
,

we conclude that

σ2
X =

2

3
−
(
4

5

)2

=
2

75
and σ2

Y =
1

3
−
(

8

15

)2

=
11

225
.

Hence,

ρXY =
4/225√

(2/75)(11/225)
=

4√
66

.

Note that although the covariance in Example 4.15 is larger in magnitude (dis-
regarding the sign) than that in Example 4.16, the relationship of the magnitudes
of the correlation coefficients in these two examples is just the reverse. This is
evidence that we cannot look at the magnitude of the covariance to decide on how
strong the relationship is.
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Exercises

4.33 Use Definition 4.3 on page 120 to find the vari-
ance of the random variable X of Exercise 4.7 on page
117.

4.34 Let X be a random variable with the following
probability distribution:

x −2 3 5
f(x) 0.3 0.2 0.5

Find the standard deviation of X.

4.35 The random variable X, representing the num-
ber of errors per 100 lines of software code, has the
following probability distribution:

x 2 3 4 5 6
f(x) 0.01 0.25 0.4 0.3 0.04

Using Theorem 4.2 on page 121, find the variance of
X.

4.36 Suppose that the probabilities are 0.4, 0.3, 0.2,
and 0.1, respectively, that 0, 1, 2, or 3 power failures
will strike a certain subdivision in any given year. Find
the mean and variance of the random variable X repre-
senting the number of power failures striking this sub-
division.

4.37 A dealer’s profit, in units of $5000, on a new
automobile is a random variable X having the density
function given in Exercise 4.12 on page 117. Find the
variance of X.

4.38 The proportion of people who respond to a cer-
tain mail-order solicitation is a random variable X hav-
ing the density function given in Exercise 4.14 on page
117. Find the variance of X.

4.39 The total number of hours, in units of 100 hours,
that a family runs a vacuum cleaner over a period of
one year is a random variable X having the density
function given in Exercise 4.13 on page 117. Find the
variance of X.

4.40 Referring to Exercise 4.14 on page 117, find
σ2
g(X) for the function g(X) = 3X2 + 4.

4.41 Find the standard deviation of the random vari-
able g(X) = (2X + 1)2 in Exercise 4.17 on page 118.

4.42 Using the results of Exercise 4.21 on page 118,
find the variance of g(X) = X2, where X is a random
variable having the density function given in Exercise
4.12 on page 117.

4.43 The length of time, in minutes, for an airplane
to obtain clearance for takeoff at a certain airport is a

random variable Y = 3X− 2, where X has the density
function

f(x) =

{
1
4
e−x/4, x > 0

0, elsewhere.

Find the mean and variance of the random variable Y .

4.44 Find the covariance of the random variables X
and Y of Exercise 3.39 on page 105.

4.45 Find the covariance of the random variables X
and Y of Exercise 3.49 on page 106.

4.46 Find the covariance of the random variables X
and Y of Exercise 3.44 on page 105.

4.47 For the random variables X and Y whose joint
density function is given in Exercise 3.40 on page 105,
find the covariance.

4.48 Given a random variable X, with standard de-
viation σX , and a random variable Y = a + bX, show
that if b < 0, the correlation coefficient ρXY = −1, and
if b > 0, ρXY = 1.

4.49 Consider the situation in Exercise 4.32 on page
119. The distribution of the number of imperfections
per 10 meters of synthetic failure is given by

x 0 1 2 3 4
f(x) 0.41 0.37 0.16 0.05 0.01

Find the variance and standard deviation of the num-
ber of imperfections.

4.50 For a laboratory assignment, if the equipment is
working, the density function of the observed outcome
X is

f(x) =

{
2(1− x), 0 < x < 1,

0, otherwise.

Find the variance and standard deviation of X.

4.51 For the random variables X and Y in Exercise
3.39 on page 105, determine the correlation coefficient
between X and Y .

4.52 Random variables X and Y follow a joint distri-
bution

f(x, y) =

{
2, 0 < x ≤ y < 1,

0, otherwise.

Determine the correlation coefficient between X and
Y .
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