
Chapter 5

Some Discrete Probability
Distributions

5.1 Introduction and Motivation

No matter whether a discrete probability distribution is represented graphically by
a histogram, in tabular form, or by means of a formula, the behavior of a random
variable is described. Often, the observations generated by different statistical ex-
periments have the same general type of behavior. Consequently, discrete random
variables associated with these experiments can be described by essentially the
same probability distribution and therefore can be represented by a single formula.
In fact, one needs only a handful of important probability distributions to describe
many of the discrete random variables encountered in practice.

Such a handful of distributions describe several real-life random phenomena.
For instance, in a study involving testing the effectiveness of a new drug, the num-
ber of cured patients among all the patients who use the drug approximately follows
a binomial distribution (Section 5.2). In an industrial example, when a sample of
items selected from a batch of production is tested, the number of defective items
in the sample usually can be modeled as a hypergeometric random variable (Sec-
tion 5.3). In a statistical quality control problem, the experimenter will signal a
shift of the process mean when observational data exceed certain limits. The num-
ber of samples required to produce a false alarm follows a geometric distribution
which is a special case of the negative binomial distribution (Section 5.4). On the
other hand, the number of white cells from a fixed amount of an individual’s blood
sample is usually random and may be described by a Poisson distribution (Section
5.5). In this chapter, we present these commonly used distributions with various
examples.

5.2 Binomial and Multinomial Distributions

An experiment often consists of repeated trials, each with two possible outcomes
that may be labeled success or failure. The most obvious application deals with
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144 Chapter 5 Some Discrete Probability Distributions

the testing of items as they come off an assembly line, where each trial may indicate
a defective or a nondefective item. We may choose to define either outcome as a
success. The process is referred to as a Bernoulli process. Each trial is called a
Bernoulli trial. Observe, for example, if one were drawing cards from a deck, the
probabilities for repeated trials change if the cards are not replaced. That is, the
probability of selecting a heart on the first draw is 1/4, but on the second draw it is
a conditional probability having a value of 13/51 or 12/51, depending on whether
a heart appeared on the first draw: this, then, would no longer be considered a set
of Bernoulli trials.

The Bernoulli Process

Strictly speaking, the Bernoulli process must possess the following properties:

1. The experiment consists of repeated trials.

2. Each trial results in an outcome that may be classified as a success or a failure.

3. The probability of success, denoted by p, remains constant from trial to trial.

4. The repeated trials are independent.

Consider the set of Bernoulli trials where three items are selected at random
from a manufacturing process, inspected, and classified as defective or nondefective.
A defective item is designated a success. The number of successes is a random
variable X assuming integral values from 0 through 3. The eight possible outcomes
and the corresponding values of X are

Outcome NNN NDN NND DNN NDD DND DDN DDD

x 0 1 1 1 2 2 2 3

Since the items are selected independently and we assume that the process produces
25% defectives, we have

P (NDN) = P (N)P (D)P (N) =

(
3

4

)(
1

4

)(
3

4

)
=

9

64
.

Similar calculations yield the probabilities for the other possible outcomes. The
probability distribution of X is therefore

x 0 1 2 3

f(x) 27
64

27
64

9
64

1
64

Binomial Distribution

The number X of successes in n Bernoulli trials is called a binomial random
variable. The probability distribution of this discrete random variable is called
the binomial distribution, and its values will be denoted by b(x;n, p) since they
depend on the number of trials and the probability of a success on a given trial.
Thus, for the probability distribution of X, the number of defectives is

P (X = 2) = f(2) = b

(
2; 3,

1

4

)
=

9

64
.
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Let us now generalize the above illustration to yield a formula for b(x;n, p).
That is, we wish to find a formula that gives the probability of x successes in
n trials for a binomial experiment. First, consider the probability of x successes
and n − x failures in a specified order. Since the trials are independent, we can
multiply all the probabilities corresponding to the different outcomes. Each success
occurs with probability p and each failure with probability q = 1 − p. Therefore,
the probability for the specified order is pxqn−x. We must now determine the total
number of sample points in the experiment that have x successes and n−x failures.
This number is equal to the number of partitions of n outcomes into two groups
with x in one group and n−x in the other and is written

(
n
x

)
as introduced in Section

2.3. Because these partitions are mutually exclusive, we add the probabilities of all
the different partitions to obtain the general formula, or simply multiply pxqn−x

by
(
n
x

)
.

Binomial
Distribution

A Bernoulli trial can result in a success with probability p and a failure with
probability q = 1−p. Then the probability distribution of the binomial random
variable X, the number of successes in n independent trials, is

b(x;n, p) =

(
n

x

)
pxqn−x, x = 0, 1, 2, . . . , n.

Note that when n = 3 and p = 1/4, the probability distribution of X, the number
of defectives, may be written as

b

(
x; 3,

1

4

)
=

(
3

x

)(
1

4

)x(
3

4

)3−x

, x = 0, 1, 2, 3,

rather than in the tabular form on page 144.

Example 5.1: The probability that a certain kind of component will survive a shock test is 3/4.
Find the probability that exactly 2 of the next 4 components tested survive.

Solution : Assuming that the tests are independent and p = 3/4 for each of the 4 tests, we
obtain

b

(
2; 4,

3

4

)
=

(
4

2

)(
3

4

)2(
1

4

)2

=

(
4!

2! 2!

)(
32

44

)
=

27

128
.

Where Does the Name Binomial Come From?

The binomial distribution derives its name from the fact that the n + 1 terms in
the binomial expansion of (q+p)n correspond to the various values of b(x;n, p) for
x = 0, 1, 2, . . . , n. That is,

(q + p)n =

(
n

0

)
qn +

(
n

1

)
pqn−1 +

(
n

2

)
p2qn−2 + · · ·+

(
n

n

)
pn

= b(0;n, p) + b(1;n, p) + b(2;n, p) + · · ·+ b(n;n, p).

Since p+ q = 1, we see that

n∑
x=0

b(x;n, p) = 1,
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a condition that must hold for any probability distribution.
Frequently, we are interested in problems where it is necessary to find P (X < r)

or P (a ≤ X ≤ b). Binomial sums

B(r;n, p) =
r∑

x=0

b(x;n, p)

are given in Table A.1 of the Appendix for n = 1, 2, . . . , 20 for selected values of p
from 0.1 to 0.9. We illustrate the use of Table A.1 with the following example.

Example 5.2: The probability that a patient recovers from a rare blood disease is 0.4. If 15 people
are known to have contracted this disease, what is the probability that (a) at least
10 survive, (b) from 3 to 8 survive, and (c) exactly 5 survive?

Solution : Let X be the number of people who survive.

(a) P (X ≥ 10) = 1− P (X < 10) = 1−
9∑

x=0

b(x; 15, 0.4) = 1− 0.9662

= 0.0338

(b) P (3 ≤ X ≤ 8) =
8∑

x=3

b(x; 15, 0.4) =
8∑

x=0

b(x; 15, 0.4)−
2∑

x=0

b(x; 15, 0.4)

= 0.9050− 0.0271 = 0.8779

(c) P (X = 5) = b(5; 15, 0.4) =
5∑

x=0

b(x; 15, 0.4)−
4∑

x=0

b(x; 15, 0.4)

= 0.4032− 0.2173 = 0.1859

Example 5.3: A large chain retailer purchases a certain kind of electronic device from a manu-
facturer. The manufacturer indicates that the defective rate of the device is 3%.

(a) The inspector randomly picks 20 items from a shipment. What is the proba-
bility that there will be at least one defective item among these 20?

(b) Suppose that the retailer receives 10 shipments in a month and the inspector
randomly tests 20 devices per shipment. What is the probability that there
will be exactly 3 shipments each containing at least one defective device among
the 20 that are selected and tested from the shipment?

Solution : (a) Denote by X the number of defective devices among the 20. Then X follows
a b(x; 20, 0.03) distribution. Hence,

P (X ≥ 1) = 1− P (X = 0) = 1− b(0; 20, 0.03)

= 1− (0.03)0(1− 0.03)20−0 = 0.4562.

(b) In this case, each shipment can either contain at least one defective item or
not. Hence, testing of each shipment can be viewed as a Bernoulli trial with
p = 0.4562 from part (a). Assuming independence from shipment to shipment
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and denoting by Y the number of shipments containing at least one defective
item, Y follows another binomial distribution b(y; 10, 0.4562). Therefore,

P (Y = 3) =

(
10

3

)
0.45623(1− 0.4562)7 = 0.1602.

Areas of Application

From Examples 5.1 through 5.3, it should be clear that the binomial distribution
finds applications in many scientific fields. An industrial engineer is keenly inter-
ested in the “proportion defective” in an industrial process. Often, quality control
measures and sampling schemes for processes are based on the binomial distribu-
tion. This distribution applies to any industrial situation where an outcome of a
process is dichotomous and the results of the process are independent, with the
probability of success being constant from trial to trial. The binomial distribution
is also used extensively for medical and military applications. In both fields, a
success or failure result is important. For example, “cure” or “no cure” is impor-
tant in pharmaceutical work, and “hit” or “miss” is often the interpretation of the
result of firing a guided missile.

Since the probability distribution of any binomial random variable depends only
on the values assumed by the parameters n, p, and q, it would seem reasonable
to assume that the mean and variance of a binomial random variable also depend
on the values assumed by these parameters. Indeed, this is true, and in the proof
of Theorem 5.1 we derive general formulas that can be used to compute the mean
and variance of any binomial random variable as functions of n, p, and q.

Theorem 5.1: The mean and variance of the binomial distribution b(x;n, p) are
μ = np and σ2 = npq.

Proof : Let the outcome on the jth trial be represented by a Bernoulli random variable
Ij , which assumes the values 0 and 1 with probabilities q and p, respectively.
Therefore, in a binomial experiment the number of successes can be written as the
sum of the n independent indicator variables. Hence,

X = I1 + I2 + · · ·+ In.

The mean of any Ij is E(Ij) = (0)(q) + (1)(p) = p. Therefore, using Corollary 4.4
on page 131, the mean of the binomial distribution is

μ = E(X) = E(I1) + E(I2) + · · ·+ E(In) = p+ p+ · · ·+ p︸ ︷︷ ︸
n terms

= np.

The variance of any Ij is σ
2
Ij

= E(I2j )−p2 = (0)2(q)+(1)2(p)−p2 = p(1−p) = pq.
Extending Corollary 4.11 to the case of n independent Bernoulli variables gives the
variance of the binomial distribution as

σ2
X = σ2

I1 + σ2
I2 + · · ·+ σ2

In = pq + pq + · · ·+ pq︸ ︷︷ ︸
n terms

= npq.
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Example 5.4: It is conjectured that an impurity exists in 30% of all drinking wells in a certain
rural community. In order to gain some insight into the true extent of the problem,
it is determined that some testing is necessary. It is too expensive to test all of the
wells in the area, so 10 are randomly selected for testing.

(a) Using the binomial distribution, what is the probability that exactly 3 wells
have the impurity, assuming that the conjecture is correct?

(b) What is the probability that more than 3 wells are impure?

Solution : (a) We require

b(3; 10, 0.3) =

3∑
x=0

b(x; 10, 0.3)−
2∑

x=0

b(x; 10, 0.3) = 0.6496− 0.3828 = 0.2668.

(b) In this case, P (X > 3) = 1− 0.6496 = 0.3504.

Example 5.5: Find the mean and variance of the binomial random variable of Example 5.2, and
then use Chebyshev’s theorem (on page 137) to interpret the interval μ± 2σ.

Solution : Since Example 5.2 was a binomial experiment with n = 15 and p = 0.4, by Theorem
5.1, we have

μ = (15)(0.4) = 6 and σ2 = (15)(0.4)(0.6) = 3.6.

Taking the square root of 3.6, we find that σ = 1.897. Hence, the required interval is
6±(2)(1.897), or from 2.206 to 9.794. Chebyshev’s theorem states that the number
of recoveries among 15 patients who contracted the disease has a probability of at
least 3/4 of falling between 2.206 and 9.794 or, because the data are discrete,
between 2 and 10 inclusive.

There are solutions in which the computation of binomial probabilities may
allow us to draw a scientific inference about population after data are collected.
An illustration is given in the next example.

Example 5.6: Consider the situation of Example 5.4. The notion that 30% of the wells are impure
is merely a conjecture put forth by the area water board. Suppose 10 wells are
randomly selected and 6 are found to contain the impurity. What does this imply
about the conjecture? Use a probability statement.

Solution : We must first ask: “If the conjecture is correct, is it likely that we would find 6 or
more impure wells?”

P (X ≥ 6) =
10∑
x=0

b(x; 10, 0.3)−
5∑

x=0

b(x; 10, 0.3) = 1− 0.9527 = 0.0473.

As a result, it is very unlikely (4.7% chance) that 6 or more wells would be found
impure if only 30% of all are impure. This casts considerable doubt on the conjec-
ture and suggests that the impurity problem is much more severe.

As the reader should realize by now, in many applications there are more than
two possible outcomes. To borrow an example from the field of genetics, the color of
guinea pigs produced as offspring may be red, black, or white. Often the “defective”
or “not defective” dichotomy is truly an oversimplification in engineering situations.
Indeed, there are often more than two categories that characterize items or parts
coming off an assembly line.
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Multinomial Experiments and the Multinomial Distribution

The binomial experiment becomes a multinomial experiment if we let each
trial have more than two possible outcomes. The classification of a manufactured
product as being light, heavy, or acceptable and the recording of accidents at a
certain intersection according to the day of the week constitute multinomial exper-
iments. The drawing of a card from a deck with replacement is also a multinomial
experiment if the 4 suits are the outcomes of interest.

In general, if a given trial can result in any one of k possible outcomes E1, E2, . . . ,
Ek with probabilities p1, p2, . . . , pk, then the multinomial distribution will give
the probability that E1 occurs x1 times, E2 occurs x2 times, . . . , and Ek occurs
xk times in n independent trials, where

x1 + x2 + · · ·+ xk = n.

We shall denote this joint probability distribution by

f(x1, x2, . . . , xk; p1, p2, . . . , pk, n).

Clearly, p1 + p2 + · · · + pk = 1, since the result of each trial must be one of the k
possible outcomes.

To derive the general formula, we proceed as in the binomial case. Since the
trials are independent, any specified order yielding x1 outcomes for E1, x2 for
E2, . . . , xk for Ek will occur with probability px1

1 px2
2 · · · pxk

k . The total number of
orders yielding similar outcomes for the n trials is equal to the number of partitions
of n items into k groups with x1 in the first group, x2 in the second group, . . . ,
and xk in the kth group. This can be done in(

n

x1, x2, . . . , xk

)
=

n!

x1!x2! · · ·xk!

ways. Since all the partitions are mutually exclusive and occur with equal proba-
bility, we obtain the multinomial distribution by multiplying the probability for a
specified order by the total number of partitions.

Multinomial
Distribution

If a given trial can result in the k outcomes E1, E2, . . . , Ek with probabilities
p1, p2, . . . , pk, then the probability distribution of the random variables X1, X2,
. . . , Xk, representing the number of occurrences for E1, E2, . . . , Ek in n inde-
pendent trials, is

f(x1, x2, . . . , xk; p1, p2, . . . , pk, n) =

(
n

x1, x2, . . . , xk

)
px1
1 px2

2 · · · pxk

k ,

with
k∑

i=1

xi = n and
k∑

i=1

pi = 1.

The multinomial distribution derives its name from the fact that the terms of
the multinomial expansion of (p1 + p2 + · · · + pk)

n correspond to all the possible
values of f(x1, x2, . . . , xk; p1, p2, . . . , pk, n).
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Example 5.7: The complexity of arrivals and departures of planes at an airport is such that
computer simulation is often used to model the “ideal” conditions. For a certain
airport with three runways, it is known that in the ideal setting the following are
the probabilities that the individual runways are accessed by a randomly arriving
commercial jet:

Runway 1: p1 = 2/9,
Runway 2: p2 = 1/6,
Runway 3: p3 = 11/18.

What is the probability that 6 randomly arriving airplanes are distributed in the
following fashion?

Runway 1: 2 airplanes,
Runway 2: 1 airplane,
Runway 3: 3 airplanes

Solution : Using the multinomial distribution, we have

f

(
2, 1, 3;

2

9
,
1

6
,
11

18
, 6

)
=

(
6

2, 1, 3

)(
2

9

)2(
1

6

)1(
11

18

)3

=
6!

2! 1! 3!
· 2

2

92
· 1
6
· 11

3

183
= 0.1127.

Exercises

5.1 A random variable X that assumes the values
x1, x2, . . . , xk is called a discrete uniform random vari-
able if its probability mass function is f(x) = 1

k
for all

of x1, x2, . . . , xk and 0 otherwise. Find the mean and
variance of X.

5.2 Twelve people are given two identical speakers,
which they are asked to listen to for differences, if any.
Suppose that these people answer simply by guessing.
Find the probability that three people claim to have
heard a difference between the two speakers.

5.3 An employee is selected from a staff of 10 to super-
vise a certain project by selecting a tag at random from
a box containing 10 tags numbered from 1 to 10. Find
the formula for the probability distribution of X rep-
resenting the number on the tag that is drawn. What
is the probability that the number drawn is less than
4?

5.4 In a certain city district, the need for money to
buy drugs is stated as the reason for 75% of all thefts.
Find the probability that among the next 5 theft cases
reported in this district,

(a) exactly 2 resulted from the need for money to buy
drugs;

(b) at most 3 resulted from the need for money to buy
drugs.

5.5 According to Chemical Engineering Progress
(November 1990), approximately 30% of all pipework
failures in chemical plants are caused by operator error.

(a) What is the probability that out of the next 20
pipework failures at least 10 are due to operator
error?

(b) What is the probability that no more than 4 out of
20 such failures are due to operator error?

(c) Suppose, for a particular plant, that out of the ran-
dom sample of 20 such failures, exactly 5 are due
to operator error. Do you feel that the 30% figure
stated above applies to this plant? Comment.

5.6 According to a survey by the Administrative
Management Society, one-half of U.S. companies give
employees 4 weeks of vacation after they have been
with the company for 15 years. Find the probabil-
ity that among 6 companies surveyed at random, the
number that give employees 4 weeks of vacation after
15 years of employment is

(a) anywhere from 2 to 5;

(b) fewer than 3.

5.7 One prominent physician claims that 70% of those
with lung cancer are chain smokers. If his assertion is
correct,

(a) find the probability that of 10 such patients
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recently admitted to a hospital, fewer than half are
chain smokers;

(b) find the probability that of 20 such patients re-
cently admitted to a hospital, fewer than half are
chain smokers.

5.8 According to a study published by a group of Uni-
versity of Massachusetts sociologists, approximately
60% of the Valium users in the state of Massachusetts
first took Valium for psychological problems. Find the
probability that among the next 8 users from this state
who are interviewed,

(a) exactly 3 began taking Valium for psychological
problems;

(b) at least 5 began taking Valium for problems that
were not psychological.

5.9 In testing a certain kind of truck tire over rugged
terrain, it is found that 25% of the trucks fail to com-
plete the test run without a blowout. Of the next 15
trucks tested, find the probability that

(a) from 3 to 6 have blowouts;

(b) fewer than 4 have blowouts;

(c) more than 5 have blowouts.

5.10 A nationwide survey of college seniors by the
University of Michigan revealed that almost 70% dis-
approve of daily pot smoking, according to a report in
Parade. If 12 seniors are selected at random and asked
their opinion, find the probability that the number who
disapprove of smoking pot daily is

(a) anywhere from 7 to 9;

(b) at most 5;

(c) not less than 8.

5.11 The probability that a patient recovers from a
delicate heart operation is 0.9. What is the probabil-
ity that exactly 5 of the next 7 patients having this
operation survive?

5.12 A traffic control engineer reports that 75% of the
vehicles passing through a checkpoint are from within
the state. What is the probability that fewer than 4 of
the next 9 vehicles are from out of state?

5.13 A national study that examined attitudes about
antidepressants revealed that approximately 70% of re-
spondents believe “antidepressants do not really cure
anything, they just cover up the real trouble.” Accord-
ing to this study, what is the probability that at least
3 of the next 5 people selected at random will hold this
opinion?

5.14 The percentage of wins for the Chicago Bulls
basketball team going into the playoffs for the 1996–97
season was 87.7. Round the 87.7 to 90 in order to use
Table A.1.

(a) What is the probability that the Bulls sweep (4-0)
the initial best-of-7 playoff series?

(b) What is the probability that the Bulls win the ini-
tial best-of-7 playoff series?

(c) What very important assumption is made in an-
swering parts (a) and (b)?

5.15 It is known that 60% of mice inoculated with a
serum are protected from a certain disease. If 5 mice
are inoculated, find the probability that

(a) none contracts the disease;

(b) fewer than 2 contract the disease;

(c) more than 3 contract the disease.

5.16 Suppose that airplane engines operate indepen-
dently and fail with probability equal to 0.4. Assuming
that a plane makes a safe flight if at least one-half of its
engines run, determine whether a 4-engine plane or a 2-
engine plane has the higher probability for a successful
flight.

5.17 If X represents the number of people in Exer-
cise 5.13 who believe that antidepressants do not cure
but only cover up the real problem, find the mean and
variance of X when 5 people are selected at random.

5.18 (a) In Exercise 5.9, how many of the 15 trucks
would you expect to have blowouts?

(b) What is the variance of the number of blowouts ex-
perienced by the 15 trucks? What does that mean?

5.19 As a student drives to school, he encounters a
traffic signal. This traffic signal stays green for 35 sec-
onds, yellow for 5 seconds, and red for 60 seconds. As-
sume that the student goes to school each weekday
between 8:00 and 8:30 a.m. Let X1 be the number of
times he encounters a green light, X2 be the number
of times he encounters a yellow light, and X3 be the
number of times he encounters a red light. Find the
joint distribution of X1, X2, and X3.

5.20 According to USA Today (March 18, 1997), of 4
million workers in the general workforce, 5.8% tested
positive for drugs. Of those testing positive, 22.5%
were cocaine users and 54.4% marijuana users.

(a) What is the probability that of 10 workers testing
positive, 2 are cocaine users, 5 are marijuana users,
and 3 are users of other drugs?

(b) What is the probability that of 10 workers testing
positive, all are marijuana users?
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(c) What is the probability that of 10 workers testing
positive, none is a cocaine user?

5.21 The surface of a circular dart board has a small
center circle called the bull’s-eye and 20 pie-shaped re-
gions numbered from 1 to 20. Each of the pie-shaped
regions is further divided into three parts such that a
person throwing a dart that lands in a specific region
scores the value of the number, double the number,
or triple the number, depending on which of the three
parts the dart hits. If a person hits the bull’s-eye with
probability 0.01, hits a double with probability 0.10,
hits a triple with probability 0.05, and misses the dart
board with probability 0.02, what is the probability
that 7 throws will result in no bull’s-eyes, no triples, a
double twice, and a complete miss once?

5.22 According to a genetics theory, a certain cross of
guinea pigs will result in red, black, and white offspring
in the ratio 8:4:4. Find the probability that among 8
offspring, 5 will be red, 2 black, and 1 white.

5.23 The probabilities are 0.4, 0.2, 0.3, and 0.1, re-
spectively, that a delegate to a certain convention ar-
rived by air, bus, automobile, or train. What is the
probability that among 9 delegates randomly selected
at this convention, 3 arrived by air, 3 arrived by bus,
1 arrived by automobile, and 2 arrived by train?

5.24 A safety engineer claims that only 40% of all
workers wear safety helmets when they eat lunch at
the workplace. Assuming that this claim is right, find
the probability that 4 of 6 workers randomly chosen
will be wearing their helmets while having lunch at the
workplace.

5.25 Suppose that for a very large shipment of
integrated-circuit chips, the probability of failure for
any one chip is 0.10. Assuming that the assumptions
underlying the binomial distributions are met, find the
probability that at most 3 chips fail in a random sample
of 20.

5.26 Assuming that 6 in 10 automobile accidents are
due mainly to a speed violation, find the probabil-
ity that among 8 automobile accidents, 6 will be due
mainly to a speed violation

(a) by using the formula for the binomial distribution;

(b) by using Table A.1.

5.27 If the probability that a fluorescent light has a
useful life of at least 800 hours is 0.9, find the proba-
bilities that among 20 such lights

(a) exactly 18 will have a useful life of at least 800
hours;

(b) at least 15 will have a useful life of at least 800
hours;

(c) at least 2 will not have a useful life of at least 800
hours.

5.28 A manufacturer knows that on average 20% of
the electric toasters produced require repairs within 1
year after they are sold. When 20 toasters are ran-
domly selected, find appropriate numbers x and y such
that

(a) the probability that at least x of them will require
repairs is less than 0.5;

(b) the probability that at least y of them will not re-
quire repairs is greater than 0.8.

5.3 Hypergeometric Distribution

The simplest way to view the distinction between the binomial distribution of
Section 5.2 and the hypergeometric distribution is to note the way the sampling is
done. The types of applications for the hypergeometric are very similar to those
for the binomial distribution. We are interested in computing probabilities for the
number of observations that fall into a particular category. But in the case of the
binomial distribution, independence among trials is required. As a result, if that
distribution is applied to, say, sampling from a lot of items (deck of cards, batch
of production items), the sampling must be done with replacement of each item
after it is observed. On the other hand, the hypergeometric distribution does not
require independence and is based on sampling done without replacement.

Applications for the hypergeometric distribution are found in many areas, with
heavy use in acceptance sampling, electronic testing, and quality assurance. Ob-
viously, in many of these fields, testing is done at the expense of the item being
tested. That is, the item is destroyed and hence cannot be replaced in the sample.
Thus, sampling without replacement is necessary. A simple example with playing
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cards will serve as our first illustration.
If we wish to find the probability of observing 3 red cards in 5 draws from an

ordinary deck of 52 playing cards, the binomial distribution of Section 5.2 does not
apply unless each card is replaced and the deck reshuffled before the next draw is
made. To solve the problem of sampling without replacement, let us restate the
problem. If 5 cards are drawn at random, we are interested in the probability of
selecting 3 red cards from the 26 available in the deck and 2 black cards from the 26
available in the deck. There are

(
26
3

)
ways of selecting 3 red cards, and for each of

these ways we can choose 2 black cards in
(
26
2

)
ways. Therefore, the total number

of ways to select 3 red and 2 black cards in 5 draws is the product
(
26
3

)(
26
2

)
. The

total number of ways to select any 5 cards from the 52 that are available is
(
52
5

)
.

Hence, the probability of selecting 5 cards without replacement of which 3 are red
and 2 are black is given by(

26
3

)(
26
2

)(
52
5

) =
(26!/3! 23!)(26!/2! 24!)

52!/5! 47!
= 0.3251.

In general, we are interested in the probability of selecting x successes from
the k items labeled successes and n − x failures from the N − k items labeled
failures when a random sample of size n is selected from N items. This is known
as a hypergeometric experiment, that is, one that possesses the following two
properties:

1. A random sample of size n is selected without replacement from N items.

2. Of the N items, k may be classified as successes and N − k are classified as
failures.

The number X of successes of a hypergeometric experiment is called a hyper-
geometric random variable. Accordingly, the probability distribution of the
hypergeometric variable is called the hypergeometric distribution, and its val-
ues are denoted by h(x;N,n, k), since they depend on the number of successes k
in the set N from which we select n items.

Hypergeometric Distribution in Acceptance Sampling

Like the binomial distribution, the hypergeometric distribution finds applications
in acceptance sampling, where lots of materials or parts are sampled in order to
determine whether or not the entire lot is accepted.

Example 5.8: A particular part that is used as an injection device is sold in lots of 10. The
producer deems a lot acceptable if no more than one defective is in the lot. A
sampling plan involves random sampling and testing 3 of the parts out of 10. If
none of the 3 is defective, the lot is accepted. Comment on the utility of this plan.

Solution : Let us assume that the lot is truly unacceptable (i.e., that 2 out of 10 parts are
defective). The probability that the sampling plan finds the lot acceptable is

P (X = 0) =

(
2
0

)(
8
3

)(
10
3

) = 0.467.
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Thus, if the lot is truly unacceptable, with 2 defective parts, this sampling plan
will allow acceptance roughly 47% of the time. As a result, this plan should be
considered faulty.

Let us now generalize in order to find a formula for h(x;N,n, k). The total
number of samples of size n chosen from N items is

(
N
n

)
. These samples are

assumed to be equally likely. There are
(
k
x

)
ways of selecting x successes from the

k that are available, and for each of these ways we can choose the n− x failures in(
N−k
n−x

)
ways. Thus, the total number of favorable samples among the

(
N
n

)
possible

samples is given by
(
k
x

)(
N−k
n−x

)
. Hence, we have the following definition.

Hypergeometric
Distribution

The probability distribution of the hypergeometric random variableX, the num-
ber of successes in a random sample of size n selected from N items of which k
are labeled success and N − k labeled failure, is

h(x;N,n, k) =

(
k
x

)(
N−k
n−x

)(
N
n

) , max{0, n− (N − k)} ≤ x ≤ min{n, k}.

The range of x can be determined by the three binomial coefficients in the
definition, where x and n−x are no more than k and N−k, respectively, and both
of them cannot be less than 0. Usually, when both k (the number of successes)
and N − k (the number of failures) are larger than the sample size n, the range of
a hypergeometric random variable will be x = 0, 1, . . . , n.

Example 5.9: Lots of 40 components each are deemed unacceptable if they contain 3 or more
defectives. The procedure for sampling a lot is to select 5 components at random
and to reject the lot if a defective is found. What is the probability that exactly 1
defective is found in the sample if there are 3 defectives in the entire lot?

Solution : Using the hypergeometric distribution with n = 5, N = 40, k = 3, and x = 1, we
find the probability of obtaining 1 defective to be

h(1; 40, 5, 3) =

(
3
1

)(
37
4

)(
40
5

) = 0.3011.

Once again, this plan is not desirable since it detects a bad lot (3 defectives) only
about 30% of the time.

Theorem 5.2: The mean and variance of the hypergeometric distribution h(x;N,n, k) are

μ =
nk

N
and σ2 =

N − n

N − 1
· n · k

N

(
1− k

N

)
.

The proof for the mean is shown in Appendix A.24.

Example 5.10: Let us now reinvestigate Example 3.4 on page 83. The purpose of this example was
to illustrate the notion of a random variable and the corresponding sample space.
In the example, we have a lot of 100 items of which 12 are defective. What is the
probability that in a sample of 10, 3 are defective?
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Solution : Using the hypergeometric probability function, we have

h(3; 100, 10, 12) =

(
12
3

)(
88
7

)(
100
10

) = 0.08.

Example 5.11: Find the mean and variance of the random variable of Example 5.9 and then use
Chebyshev’s theorem to interpret the interval μ± 2σ.

Solution : Since Example 5.9 was a hypergeometric experiment with N = 40, n = 5, and
k = 3, by Theorem 5.2, we have

μ =
(5)(3)

40
=

3

8
= 0.375,

and

σ2 =

(
40− 5

39

)
(5)

(
3

40

)(
1− 3

40

)
= 0.3113.

Taking the square root of 0.3113, we find that σ = 0.558. Hence, the required
interval is 0.375 ± (2)(0.558), or from −0.741 to 1.491. Chebyshev’s theorem
states that the number of defectives obtained when 5 components are selected at
random from a lot of 40 components of which 3 are defective has a probability of
at least 3/4 of falling between −0.741 and 1.491. That is, at least three-fourths of
the time, the 5 components include fewer than 2 defectives.

Relationship to the Binomial Distribution

In this chapter, we discuss several important discrete distributions that have wide
applicability. Many of these distributions relate nicely to each other. The beginning
student should gain a clear understanding of these relationships. There is an
interesting relationship between the hypergeometric and the binomial distribution.
As one might expect, if n is small compared toN , the nature of theN items changes
very little in each draw. So a binomial distribution can be used to approximate
the hypergeometric distribution when n is small compared to N . In fact, as a rule
of thumb, the approximation is good when n/N ≤ 0.05.

Thus, the quantity k/N plays the role of the binomial parameter p. As a
result, the binomial distribution may be viewed as a large-population version of the
hypergeometric distribution. The mean and variance then come from the formulas

μ = np =
nk

N
and σ2 = npq = n · k

N

(
1− k

N

)
.

Comparing these formulas with those of Theorem 5.2, we see that the mean is the
same but the variance differs by a correction factor of (N − n)/(N − 1), which is
negligible when n is small relative to N .

Example 5.12: A manufacturer of automobile tires reports that among a shipment of 5000 sent to
a local distributor, 1000 are slightly blemished. If one purchases 10 of these tires at
random from the distributor, what is the probability that exactly 3 are blemished?
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Solution : Since N = 5000 is large relative to the sample size n = 10, we shall approximate the
desired probability by using the binomial distribution. The probability of obtaining
a blemished tire is 0.2. Therefore, the probability of obtaining exactly 3 blemished
tires is

h(3; 5000, 10, 1000) ≈ b(3; 10, 0.2) = 0.8791− 0.6778 = 0.2013.

On the other hand, the exact probability is h(3; 5000, 10, 1000) = 0.2015.
The hypergeometric distribution can be extended to treat the case where the

N items can be partitioned into k cells A1, A2, . . . , Ak with a1 elements in the first
cell, a2 elements in the second cell, . . . , ak elements in the kth cell. We are now
interested in the probability that a random sample of size n yields x1 elements
from A1, x2 elements from A2, . . . , and xk elements from Ak. Let us represent
this probability by

f(x1, x2, . . . , xk; a1, a2, . . . , ak, N, n).

To obtain a general formula, we note that the total number of samples of size
n that can be chosen from N items is still

(
N
n

)
. There are

(
a1

x1

)
ways of selecting

x1 items from the items in A1, and for each of these we can choose x2 items from
the items in A2 in

(
a2

x2

)
ways. Therefore, we can select x1 items from A1 and x2

items from A2 in
(
a1

x1

)(
a2

x2

)
ways. Continuing in this way, we can select all n items

consisting of x1 from A1, x2 from A2, . . . , and xk from Ak in(
a1
x1

)(
a2
x2

)
· · ·

(
ak
xk

)
ways.

The required probability distribution is now defined as follows.

Multivariate
Hypergeometric

Distribution

If N items can be partitioned into the k cells A1, A2, . . . , Ak with a1, a2, . . . , ak
elements, respectively, then the probability distribution of the random vari-
ables X1, X2, . . . , Xk, representing the number of elements selected from
A1, A2, . . . , Ak in a random sample of size n, is

f(x1, x2, . . . , xk; a1, a2, . . . , ak, N, n) =

(
a1

x1

)(
a2

x2

) · · · (ak

xk

)(
N
n

) ,

with
k∑

i=1

xi = n and
k∑

i=1

ai = N .

Example 5.13: A group of 10 individuals is used for a biological case study. The group contains 3
people with blood type O, 4 with blood type A, and 3 with blood type B. What is
the probability that a random sample of 5 will contain 1 person with blood type
O, 2 people with blood type A, and 2 people with blood type B?

Solution : Using the extension of the hypergeometric distribution with x1 = 1, x2 = 2, x3 = 2,
a1 = 3, a2 = 4, a3 = 3, N = 10, and n = 5, we find that the desired probability is

f(1, 2, 2; 3, 4, 3, 10, 5) =

(
3
1

)(
4
2

)(
3
2

)(
10
5

) =
3

14
.
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Exercises

5.29 A homeowner plants 6 bulbs selected at ran-
dom from a box containing 5 tulip bulbs and 4 daf-
fodil bulbs. What is the probability that he planted 2
daffodil bulbs and 4 tulip bulbs?

5.30 To avoid detection at customs, a traveler places
6 narcotic tablets in a bottle containing 9 vitamin
tablets that are similar in appearance. If the customs
official selects 3 of the tablets at random for analysis,
what is the probability that the traveler will be arrested
for illegal possession of narcotics?

5.31 A random committee of size 3 is selected from
4 doctors and 2 nurses. Write a formula for the prob-
ability distribution of the random variable X repre-
senting the number of doctors on the committee. Find
P (2 ≤ X ≤ 3).

5.32 From a lot of 10 missiles, 4 are selected at ran-
dom and fired. If the lot contains 3 defective missiles
that will not fire, what is the probability that

(a) all 4 will fire?

(b) at most 2 will not fire?

5.33 If 7 cards are dealt from an ordinary deck of 52
playing cards, what is the probability that

(a) exactly 2 of them will be face cards?

(b) at least 1 of them will be a queen?

5.34 What is the probability that a waitress will
refuse to serve alcoholic beverages to only 2 minors
if she randomly checks the IDs of 5 among 9 students,
4 of whom are minors?

5.35 A company is interested in evaluating its cur-
rent inspection procedure for shipments of 50 identical
items. The procedure is to take a sample of 5 and
pass the shipment if no more than 2 are found to be
defective. What proportion of shipments with 20% de-
fectives will be accepted?

5.36 A manufacturing company uses an acceptance
scheme on items from a production line before they
are shipped. The plan is a two-stage one. Boxes of 25
items are readied for shipment, and a sample of 3 items
is tested for defectives. If any defectives are found, the
entire box is sent back for 100% screening. If no defec-
tives are found, the box is shipped.

(a) What is the probability that a box containing 3
defectives will be shipped?

(b) What is the probability that a box containing only
1 defective will be sent back for screening?

5.37 Suppose that the manufacturing company of Ex-
ercise 5.36 decides to change its acceptance scheme.
Under the new scheme, an inspector takes 1 item at
random, inspects it, and then replaces it in the box;
a second inspector does likewise. Finally, a third in-
spector goes through the same procedure. The box is
not shipped if any of the three inspectors find a de-
fective. Answer the questions in Exercise 5.36 for this
new plan.

5.38 Among 150 IRS employees in a large city, only
30 are women. If 10 of the employees are chosen at
random to provide free tax assistance for the residents
of this city, use the binomial approximation to the hy-
pergeometric distribution to find the probability that
at least 3 women are selected.

5.39 An annexation suit against a county subdivision
of 1200 residences is being considered by a neighboring
city. If the occupants of half the residences object to
being annexed, what is the probability that in a ran-
dom sample of 10 at least 3 favor the annexation suit?

5.40 It is estimated that 4000 of the 10,000 voting
residents of a town are against a new sales tax. If 15
eligible voters are selected at random and asked their
opinion, what is the probability that at most 7 favor
the new tax?

5.41 A nationwide survey of 17,000 college seniors by
the University of Michigan revealed that almost 70%
disapprove of daily pot smoking. If 18 of these seniors
are selected at random and asked their opinion, what
is the probability that more than 9 but fewer than 14
disapprove of smoking pot daily?

5.42 Find the probability of being dealt a bridge hand
of 13 cards containing 5 spades, 2 hearts, 3 diamonds,
and 3 clubs.

5.43 A foreign student club lists as its members 2
Canadians, 3 Japanese, 5 Italians, and 2 Germans. If
a committee of 4 is selected at random, find the prob-
ability that

(a) all nationalities are represented;

(b) all nationalities except Italian are represented.

5.44 An urn contains 3 green balls, 2 blue balls, and
4 red balls. In a random sample of 5 balls, find the
probability that both blue balls and at least 1 red ball
are selected.

5.45 Biologists doing studies in a particular environ-
ment often tag and release subjects in order to estimate
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the size of a population or the prevalence of certain
features in the population. Ten animals of a certain
population thought to be extinct (or near extinction)
are caught, tagged, and released in a certain region.
After a period of time, a random sample of 15 of this
type of animal is selected in the region. What is the
probability that 5 of those selected are tagged if there
are 25 animals of this type in the region?

5.46 A large company has an inspection system for
the batches of small compressors purchased from ven-
dors. A batch typically contains 15 compressors. In the
inspection system, a random sample of 5 is selected and
all are tested. Suppose there are 2 faulty compressors
in the batch of 15.

(a) What is the probability that for a given sample
there will be 1 faulty compressor?

(b) What is the probability that inspection will dis-
cover both faulty compressors?

5.47 A government task force suspects that some
manufacturing companies are in violation of federal
pollution regulations with regard to dumping a certain
type of product. Twenty firms are under suspicion but
not all can be inspected. Suppose that 3 of the firms
are in violation.

(a) What is the probability that inspection of 5 firms
will find no violations?

(b) What is the probability that the plan above will
find two violations?

5.48 Every hour, 10,000 cans of soda are filled by a
machine, among which 300 underfilled cans are pro-
duced. Each hour, a sample of 30 cans is randomly
selected and the number of ounces of soda per can is
checked. Denote by X the number of cans selected
that are underfilled. Find the probability that at least
1 underfilled can will be among those sampled.

5.4 Negative Binomial and Geometric Distributions

Let us consider an experiment where the properties are the same as those listed for
a binomial experiment, with the exception that the trials will be repeated until a
fixed number of successes occur. Therefore, instead of the probability of x successes
in n trials, where n is fixed, we are now interested in the probability that the kth
success occurs on the xth trial. Experiments of this kind are called negative
binomial experiments.

As an illustration, consider the use of a drug that is known to be effective
in 60% of the cases where it is used. The drug will be considered a success if
it is effective in bringing some degree of relief to the patient. We are interested
in finding the probability that the fifth patient to experience relief is the seventh
patient to receive the drug during a given week. Designating a success by S and a
failure by F , a possible order of achieving the desired result is SFSSSFS, which
occurs with probability

(0.6)(0.4)(0.6)(0.6)(0.6)(0.4)(0.6) = (0.6)5(0.4)2.

We could list all possible orders by rearranging the F ’s and S’s except for the last
outcome, which must be the fifth success. The total number of possible orders
is equal to the number of partitions of the first six trials into two groups with 2
failures assigned to the one group and 4 successes assigned to the other group.
This can be done in

(
6
4

)
= 15 mutually exclusive ways. Hence, if X represents the

outcome on which the fifth success occurs, then

P (X = 7) =

(
6

4

)
(0.6)5(0.4)2 = 0.1866.

What Is the Negative Binomial Random Variable?

The number X of trials required to produce k successes in a negative binomial
experiment is called a negative binomial random variable, and its probability
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distribution is called the negative binomial distribution. Since its probabilities
depend on the number of successes desired and the probability of a success on a
given trial, we shall denote them by b∗(x; k, p). To obtain the general formula
for b∗(x; k, p), consider the probability of a success on the xth trial preceded by
k − 1 successes and x − k failures in some specified order. Since the trials are
independent, we can multiply all the probabilities corresponding to each desired
outcome. Each success occurs with probability p and each failure with probability
q = 1− p. Therefore, the probability for the specified order ending in success is

pk−1qx−kp = pkqx−k.

The total number of sample points in the experiment ending in a success, after the
occurrence of k−1 successes and x−k failures in any order, is equal to the number
of partitions of x−1 trials into two groups with k−1 successes corresponding to one
group and x−k failures corresponding to the other group. This number is specified
by the term

(
x−1
k−1

)
, each mutually exclusive and occurring with equal probability

pkqx−k. We obtain the general formula by multiplying pkqx−k by
(
x−1
k−1

)
.

Negative
Binomial

Distribution

If repeated independent trials can result in a success with probability p and
a failure with probability q = 1 − p, then the probability distribution of the
random variable X, the number of the trial on which the kth success occurs, is

b∗(x; k, p) =
(
x− 1

k − 1

)
pkqx−k, x = k, k + 1, k + 2, . . . .

Example 5.14: In an NBA (National Basketball Association) championship series, the team that
wins four games out of seven is the winner. Suppose that teams A and B face each
other in the championship games and that team A has probability 0.55 of winning
a game over team B.

(a) What is the probability that team A will win the series in 6 games?

(b) What is the probability that team A will win the series?

(c) If teams A and B were facing each other in a regional playoff series, which is
decided by winning three out of five games, what is the probability that team
A would win the series?

Solution : (a) b∗(6; 4, 0.55) =
(
5
3

)
0.554(1− 0.55)6−4 = 0.1853

(b) P (team A wins the championship series) is

b∗(4; 4, 0.55) + b∗(5; 4, 0.55) + b∗(6; 4, 0.55) + b∗(7; 4, 0.55)
= 0.0915 + 0.1647 + 0.1853 + 0.1668 = 0.6083.

(c) P (team A wins the playoff) is

b∗(3; 3, 0.55) + b∗(4; 3, 0.55) + b∗(5; 3, 0.55)
= 0.1664 + 0.2246 + 0.2021 = 0.5931.
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The negative binomial distribution derives its name from the fact that each
term in the expansion of pk(1 − q)−k corresponds to the values of b∗(x; k, p) for
x = k, k + 1, k + 2, . . . . If we consider the special case of the negative binomial
distribution where k = 1, we have a probability distribution for the number of
trials required for a single success. An example would be the tossing of a coin until
a head occurs. We might be interested in the probability that the first head occurs
on the fourth toss. The negative binomial distribution reduces to the form

b∗(x; 1, p) = pqx−1, x = 1, 2, 3, . . . .

Since the successive terms constitute a geometric progression, it is customary to
refer to this special case as the geometric distribution and denote its values by
g(x; p).

Geometric
Distribution

If repeated independent trials can result in a success with probability p and
a failure with probability q = 1 − p, then the probability distribution of the
random variable X, the number of the trial on which the first success occurs, is

g(x; p) = pqx−1, x = 1, 2, 3, . . . .

Example 5.15: For a certain manufacturing process, it is known that, on the average, 1 in every
100 items is defective. What is the probability that the fifth item inspected is the
first defective item found?

Solution : Using the geometric distribution with x = 5 and p = 0.01, we have

g(5; 0.01) = (0.01)(0.99)4 = 0.0096.

Example 5.16: At a “busy time,” a telephone exchange is very near capacity, so callers have
difficulty placing their calls. It may be of interest to know the number of attempts
necessary in order to make a connection. Suppose that we let p = 0.05 be the
probability of a connection during a busy time. We are interested in knowing the
probability that 5 attempts are necessary for a successful call.

Solution : Using the geometric distribution with x = 5 and p = 0.05 yields

P (X = x) = g(5; 0.05) = (0.05)(0.95)4 = 0.041.

Quite often, in applications dealing with the geometric distribution, the mean
and variance are important. For example, in Example 5.16, the expected number
of calls necessary to make a connection is quite important. The following theorem
states without proof the mean and variance of the geometric distribution.

Theorem 5.3: The mean and variance of a random variable following the geometric distribution
are

μ =
1

p
and σ2 =

1− p

p2
.
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Applications of Negative Binomial and Geometric Distributions

Areas of application for the negative binomial and geometric distributions become
obvious when one focuses on the examples in this section and the exercises devoted
to these distributions at the end of Section 5.5. In the case of the geometric
distribution, Example 5.16 depicts a situation where engineers or managers are
attempting to determine how inefficient a telephone exchange system is during
busy times. Clearly, in this case, trials occurring prior to a success represent a
cost. If there is a high probability of several attempts being required prior to
making a connection, then plans should be made to redesign the system.

Applications of the negative binomial distribution are similar in nature. Sup-
pose attempts are costly in some sense and are occurring in sequence. A high
probability of needing a “large” number of attempts to experience a fixed number
of successes is not beneficial to the scientist or engineer. Consider the scenarios
of Review Exercises 5.90 and 5.91. In Review Exercise 5.91, the oil driller defines
a certain level of success from sequentially drilling locations for oil. If only 6 at-
tempts have been made at the point where the second success is experienced, the
profits appear to dominate substantially the investment incurred by the drilling.
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