
Chapter 6

Some Continuous Probability
Distributions

6.1 Continuous Uniform Distribution

One of the simplest continuous distributions in all of statistics is the continuous
uniform distribution. This distribution is characterized by a density function
that is “flat,” and thus the probability is uniform in a closed interval, say [A, B].
Although applications of the continuous uniform distribution are not as abundant
as those for other distributions discussed in this chapter, it is appropriate for the
novice to begin this introduction to continuous distributions with the uniform
distribution.

Uniform
Distribution

The density function of the continuous uniform random variable X on the in-
terval [A, B] is

f(x;A,B) =

{
1

B−A , A ≤ x ≤ B,

0, elsewhere.

The density function forms a rectangle with base B−A and constant height 1
B−A .

As a result, the uniform distribution is often called the rectangular distribution.
Note, however, that the interval may not always be closed: [A,B]. It can be (A,B)
as well. The density function for a uniform random variable on the interval [1, 3]
is shown in Figure 6.1.

Probabilities are simple to calculate for the uniform distribution because of the
simple nature of the density function. However, note that the application of this
distribution is based on the assumption that the probability of falling in an interval
of fixed length within [A, B] is constant.

Example 6.1: Suppose that a large conference room at a certain company can be reserved for no
more than 4 hours. Both long and short conferences occur quite often. In fact, it
can be assumed that the length X of a conference has a uniform distribution on
the interval [0, 4].
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Figure 6.1: The density function for a random variable on the interval [1, 3].

(a) What is the probability density function?

(b) What is the probability that any given conference lasts at least 3 hours?

Solution : (a) The appropriate density function for the uniformly distributed random vari-
able X in this situation is

f(x) =

{
1
4 , 0 ≤ x ≤ 4,

0, elsewhere.

(b) P [X ≥ 3] =
∫ 4

3
1
4 dx = 1

4 .

Theorem 6.1: The mean and variance of the uniform distribution are

μ =
A+B

2
and σ2 =

(B −A)2

12
.

The proofs of the theorems are left to the reader. See Exercise 6.1 on page 185.

6.2 Normal Distribution

The most important continuous probability distribution in the entire field of statis-
tics is the normal distribution. Its graph, called the normal curve, is the
bell-shaped curve of Figure 6.2, which approximately describes many phenomena
that occur in nature, industry, and research. For example, physical measurements
in areas such as meteorological experiments, rainfall studies, and measurements
of manufactured parts are often more than adequately explained with a normal
distribution. In addition, errors in scientific measurements are extremely well ap-
proximated by a normal distribution. In 1733, Abraham DeMoivre developed the
mathematical equation of the normal curve. It provided a basis from which much
of the theory of inductive statistics is founded. The normal distribution is of-
ten referred to as the Gaussian distribution, in honor of Karl Friedrich Gauss
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Figure 6.2: The normal curve.

(1777–1855), who also derived its equation from a study of errors in repeated mea-
surements of the same quantity.

A continuous random variable X having the bell-shaped distribution of Figure
6.2 is called a normal random variable. The mathematical equation for the
probability distribution of the normal variable depends on the two parameters μ
and σ, its mean and standard deviation, respectively. Hence, we denote the values
of the density of X by n(x;μ, σ).

Normal
Distribution

The density of the normal random variable X, with mean μ and variance σ2, is

n(x;μ, σ) =
1√
2πσ

e−
1

2σ2 (x−μ)2 , −∞ < x < ∞,

where π = 3.14159 . . . and e = 2.71828 . . . .

Once μ and σ are specified, the normal curve is completely determined. For exam-
ple, if μ = 50 and σ = 5, then the ordinates n(x; 50, 5) can be computed for various
values of x and the curve drawn. In Figure 6.3, we have sketched two normal curves
having the same standard deviation but different means. The two curves are iden-
tical in form but are centered at different positions along the horizontal axis.

x

1 �   2σ σ

1 2μμ

Figure 6.3: Normal curves with μ1 < μ2 and σ1 = σ2.
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Figure 6.4: Normal curves with μ1 = μ2 and σ1 < σ2.

In Figure 6.4, we have sketched two normal curves with the same mean but
different standard deviations. This time we see that the two curves are centered
at exactly the same position on the horizontal axis, but the curve with the larger
standard deviation is lower and spreads out farther. Remember that the area under
a probability curve must be equal to 1, and therefore the more variable the set of
observations, the lower and wider the corresponding curve will be.

Figure 6.5 shows two normal curves having different means and different stan-
dard deviations. Clearly, they are centered at different positions on the horizontal
axis and their shapes reflect the two different values of σ.

x

1

2

2μ1μ

σ

σ

Figure 6.5: Normal curves with μ1 < μ2 and σ1 < σ2.

Based on inspection of Figures 6.2 through 6.5 and examination of the first
and second derivatives of n(x;μ, σ), we list the following properties of the normal
curve:

1. The mode, which is the point on the horizontal axis where the curve is a
maximum, occurs at x = μ.

2. The curve is symmetric about a vertical axis through the mean μ.

3. The curve has its points of inflection at x = μ± σ; it is concave downward if
μ− σ < X < μ+ σ and is concave upward otherwise.
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4. The normal curve approaches the horizontal axis asymptotically as we proceed
in either direction away from the mean.

5. The total area under the curve and above the horizontal axis is equal to 1.

Theorem 6.2: The mean and variance of n(x;μ, σ) are μ and σ2, respectively. Hence, the stan-
dard deviation is σ.

Proof : To evaluate the mean, we first calculate

E(X − μ) =

∫ ∞

−∞

x− μ√
2πσ

e−
1
2 (

x−μ
σ )

2

dx.

Setting z = (x− μ)/σ and dx = σ dz, we obtain

E(X − μ) =
1√
2π

∫ ∞

−∞
ze−

1
2 z

2

dz = 0,

since the integrand above is an odd function of z. Using Theorem 4.5 on page 128,
we conclude that

E(X) = μ.

The variance of the normal distribution is given by

E[(X − μ)2] =
1√
2πσ

∫ ∞

−∞
(x− μ)2e−

1
2 [(x−μ)/σ]2 dx.

Again setting z = (x− μ)/σ and dx = σ dz, we obtain

E[(X − μ)2] =
σ2

√
2π

∫ ∞

−∞
z2e−

z2

2 dz.

Integrating by parts with u = z and dv = ze−z2/2 dz so that du = dz and v =
−e−z2/2, we find that

E[(X − μ)2] =
σ2

√
2π

(
−ze−z2/2

∣∣∣∞
−∞

+

∫ ∞

−∞
e−z2/2 dz

)
= σ2(0 + 1) = σ2.

Many random variables have probability distributions that can be described
adequately by the normal curve once μ and σ2 are specified. In this chapter, we
shall assume that these two parameters are known, perhaps from previous inves-
tigations. Later, we shall make statistical inferences when μ and σ2 are unknown
and have been estimated from the available experimental data.

We pointed out earlier the role that the normal distribution plays as a reason-
able approximation of scientific variables in real-life experiments. There are other
applications of the normal distribution that the reader will appreciate as he or she
moves on in the book. The normal distribution finds enormous application as a
limiting distribution. Under certain conditions, the normal distribution provides a
good continuous approximation to the binomial and hypergeometric distributions.
The case of the approximation to the binomial is covered in Section 6.5. In Chap-
ter 8, the reader will learn about sampling distributions. It turns out that the
limiting distribution of sample averages is normal. This provides a broad base
for statistical inference that proves very valuable to the data analyst interested in
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estimation and hypothesis testing. Theory in the important areas such as analysis
of variance (Chapters 13, 14, and 15) and quality control (Chapter 17) is based on
assumptions that make use of the normal distribution.

In Section 6.3, examples demonstrate the use of tables of the normal distribu-
tion. Section 6.4 follows with examples of applications of the normal distribution.

6.3 Areas under the Normal Curve

The curve of any continuous probability distribution or density function is con-
structed so that the area under the curve bounded by the two ordinates x = x1

and x = x2 equals the probability that the random variable X assumes a value
between x = x1 and x = x2. Thus, for the normal curve in Figure 6.6,

P (x1 < X < x2) =

∫ x2

x1

n(x;μ, σ) dx =
1√
2πσ

∫ x2

x1

e−
1

2σ2 (x−μ)2dx

is represented by the area of the shaded region.

xx1 x2μ

Figure 6.6: P (x1 < X < x2) = area of the shaded region.

In Figures 6.3, 6.4, and 6.5 we saw how the normal curve is dependent on
the mean and the standard deviation of the distribution under investigation. The
area under the curve between any two ordinates must then also depend on the
values μ and σ. This is evident in Figure 6.7, where we have shaded regions cor-
responding to P (x1 < X < x2) for two curves with different means and variances.
P (x1 < X < x2), where X is the random variable describing distribution A, is
indicated by the shaded area below the curve of A. If X is the random variable de-
scribing distribution B, then P (x1 < X < x2) is given by the entire shaded region.
Obviously, the two shaded regions are different in size; therefore, the probability
associated with each distribution will be different for the two given values of X.

There are many types of statistical software that can be used in calculating
areas under the normal curve. The difficulty encountered in solving integrals of
normal density functions necessitates the tabulation of normal curve areas for quick
reference. However, it would be a hopeless task to attempt to set up separate tables
for every conceivable value of μ and σ. Fortunately, we are able to transform all
the observations of any normal random variable X into a new set of observations
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x1 x2
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B

Figure 6.7: P (x1 < X < x2) for different normal curves.

of a normal random variable Z with mean 0 and variance 1. This can be done by
means of the transformation

Z =
X − μ

σ
.

Whenever X assumes a value x, the corresponding value of Z is given by z =
(x − μ)/σ. Therefore, if X falls between the values x = x1 and x = x2, the
random variable Z will fall between the corresponding values z1 = (x1 − μ)/σ and
z2 = (x2 − μ)/σ. Consequently, we may write

P (x1 < X < x2) =
1√
2πσ

∫ x2

x1

e−
1

2σ2 (x−μ)2dx =
1√
2π

∫ z2

z1

e−
1
2 z

2

dz

=

∫ z2

z1

n(z; 0, 1) dz = P (z1 < Z < z2),

where Z is seen to be a normal random variable with mean 0 and variance 1.

Definition 6.1: The distribution of a normal random variable with mean 0 and variance 1 is called
a standard normal distribution.

The original and transformed distributions are illustrated in Figure 6.8. Since
all the values of X falling between x1 and x2 have corresponding z values between
z1 and z2, the area under the X-curve between the ordinates x = x1 and x = x2 in
Figure 6.8 equals the area under the Z-curve between the transformed ordinates
z = z1 and z = z2.

We have now reduced the required number of tables of normal-curve areas to
one, that of the standard normal distribution. Table A.3 indicates the area under
the standard normal curve corresponding to P (Z < z) for values of z ranging from
−3.49 to 3.49. To illustrate the use of this table, let us find the probability that Z is
less than 1.74. First, we locate a value of z equal to 1.7 in the left column; then we
move across the row to the column under 0.04, where we read 0.9591. Therefore,
P (Z < 1.74) = 0.9591. To find a z value corresponding to a given probability, the
process is reversed. For example, the z value leaving an area of 0.2148 under the
curve to the left of z is seen to be −0.79.
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Figure 6.8: The original and transformed normal distributions.

Example 6.2: Given a standard normal distribution, find the area under the curve that lies

(a) to the right of z = 1.84 and

(b) between z = −1.97 and z = 0.86.

z
0 1.84

(a)

z
�1.97 0 0.86

(b)

Figure 6.9: Areas for Example 6.2.

Solution : See Figure 6.9 for the specific areas.

(a) The area in Figure 6.9(a) to the right of z = 1.84 is equal to 1 minus the area
in Table A.3 to the left of z = 1.84, namely, 1− 0.9671 = 0.0329.

(b) The area in Figure 6.9(b) between z = −1.97 and z = 0.86 is equal to the
area to the left of z = 0.86 minus the area to the left of z = −1.97. From
Table A.3 we find the desired area to be 0.8051− 0.0244 = 0.7807.
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Example 6.3: Given a standard normal distribution, find the value of k such that

(a) P (Z > k) = 0.3015 and

(b) P (k < Z < −0.18) = 0.4197.

x
0 k

(a)

0.3015
x

k −0.18
(b)

0.4197

Figure 6.10: Areas for Example 6.3.

Solution : Distributions and the desired areas are shown in Figure 6.10.

(a) In Figure 6.10(a), we see that the k value leaving an area of 0.3015 to the
right must then leave an area of 0.6985 to the left. From Table A.3 it follows
that k = 0.52.

(b) From Table A.3 we note that the total area to the left of −0.18 is equal to
0.4286. In Figure 6.10(b), we see that the area between k and −0.18 is 0.4197,
so the area to the left of k must be 0.4286 − 0.4197 = 0.0089. Hence, from
Table A.3, we have k = −2.37.

Example 6.4: Given a random variable X having a normal distribution with μ = 50 and σ = 10,
find the probability that X assumes a value between 45 and 62.

x
0�0.5 1.2

Figure 6.11: Area for Example 6.4.

Solution : The z values corresponding to x1 = 45 and x2 = 62 are

z1 =
45− 50

10
= −0.5 and z2 =

62− 50

10
= 1.2.
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Therefore,

P (45 < X < 62) = P (−0.5 < Z < 1.2).

P (−0.5 < Z < 1.2) is shown by the area of the shaded region in Figure 6.11. This
area may be found by subtracting the area to the left of the ordinate z = −0.5
from the entire area to the left of z = 1.2. Using Table A.3, we have

P (45 < X < 62) = P (−0.5 < Z < 1.2) = P (Z < 1.2)− P (Z < −0.5)

= 0.8849− 0.3085 = 0.5764.

Example 6.5: Given that X has a normal distribution with μ = 300 and σ = 50, find the
probability that X assumes a value greater than 362.

Solution : The normal probability distribution with the desired area shaded is shown in
Figure 6.12. To find P (X > 362), we need to evaluate the area under the normal
curve to the right of x = 362. This can be done by transforming x = 362 to the
corresponding z value, obtaining the area to the left of z from Table A.3, and then
subtracting this area from 1. We find that

z =
362− 300

50
= 1.24.

Hence,

P (X > 362) = P (Z > 1.24) = 1− P (Z < 1.24) = 1− 0.8925 = 0.1075.

x
300 362

 � 50σ

Figure 6.12: Area for Example 6.5.

According to Chebyshev’s theorem on page 137, the probability that a random
variable assumes a value within 2 standard deviations of the mean is at least 3/4.
If the random variable has a normal distribution, the z values corresponding to
x1 = μ− 2σ and x2 = μ+ 2σ are easily computed to be

z1 =
(μ− 2σ)− μ

σ
= −2 and z2 =

(μ+ 2σ)− μ

σ
= 2.

Hence,

P (μ− 2σ < X < μ+ 2σ) = P (−2 < Z < 2) = P (Z < 2)− P (Z < −2)

= 0.9772− 0.0228 = 0.9544,

which is a much stronger statement than that given by Chebyshev’s theorem.
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Using the Normal Curve in Reverse

Sometimes, we are required to find the value of z corresponding to a specified
probability that falls between values listed in Table A.3 (see Example 6.6). For
convenience, we shall always choose the z value corresponding to the tabular prob-
ability that comes closest to the specified probability.

The preceding two examples were solved by going first from a value of x to a z
value and then computing the desired area. In Example 6.6, we reverse the process
and begin with a known area or probability, find the z value, and then determine
x by rearranging the formula

z =
x− μ

σ
to give x = σz + μ.

Example 6.6: Given a normal distribution with μ = 40 and σ = 6, find the value of x that has

(a) 45% of the area to the left and

(b) 14% of the area to the right.

x
40
(a)

σ = 6 σ = 6

0.45
x

40
(b)

0.14

Figure 6.13: Areas for Example 6.6.

Solution : (a) An area of 0.45 to the left of the desired x value is shaded in Figure 6.13(a).
We require a z value that leaves an area of 0.45 to the left. From Table A.3
we find P (Z < −0.13) = 0.45, so the desired z value is −0.13. Hence,

x = (6)(−0.13) + 40 = 39.22.

(b) In Figure 6.13(b), we shade an area equal to 0.14 to the right of the desired
x value. This time we require a z value that leaves 0.14 of the area to the
right and hence an area of 0.86 to the left. Again, from Table A.3, we find
P (Z < 1.08) = 0.86, so the desired z value is 1.08 and

x = (6)(1.08) + 40 = 46.48.
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6.4 Applications of the Normal Distribution

Some of the many problems for which the normal distribution is applicable are
treated in the following examples. The use of the normal curve to approximate
binomial probabilities is considered in Section 6.5.

Example 6.7: A certain type of storage battery lasts, on average, 3.0 years with a standard
deviation of 0.5 year. Assuming that battery life is normally distributed, find the
probability that a given battery will last less than 2.3 years.

Solution : First construct a diagram such as Figure 6.14, showing the given distribution of
battery lives and the desired area. To find P (X < 2.3), we need to evaluate the
area under the normal curve to the left of 2.3. This is accomplished by finding the
area to the left of the corresponding z value. Hence, we find that

z =
2.3− 3

0.5
= −1.4,

and then, using Table A.3, we have

P (X < 2.3) = P (Z < −1.4) = 0.0808.

x
32.3

 � 0.5σ

Figure 6.14: Area for Example 6.7.

x
800778 834

 � 40σ

Figure 6.15: Area for Example 6.8.

Example 6.8: An electrical firm manufactures light bulbs that have a life, before burn-out, that
is normally distributed with mean equal to 800 hours and a standard deviation of
40 hours. Find the probability that a bulb burns between 778 and 834 hours.

Solution : The distribution of light bulb life is illustrated in Figure 6.15. The z values corre-
sponding to x1 = 778 and x2 = 834 are

z1 =
778− 800

40
= −0.55 and z2 =

834− 800

40
= 0.85.

Hence,

P (778 < X < 834) = P (−0.55 < Z < 0.85) = P (Z < 0.85)− P (Z < −0.55)

= 0.8023− 0.2912 = 0.5111.

Example 6.9: In an industrial process, the diameter of a ball bearing is an important measure-
ment. The buyer sets specifications for the diameter to be 3.0 ± 0.01 cm. The
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implication is that no part falling outside these specifications will be accepted. It
is known that in the process the diameter of a ball bearing has a normal distribu-
tion with mean μ = 3.0 and standard deviation σ = 0.005. On average, how many
manufactured ball bearings will be scrapped?

Solution : The distribution of diameters is illustrated by Figure 6.16. The values correspond-
ing to the specification limits are x1 = 2.99 and x2 = 3.01. The corresponding z
values are

z1 =
2.99− 3.0

0.005
= −2.0 and z2 =

3.01− 3.0

0.005
= +2.0.

Hence,

P (2.99 < X < 3.01) = P (−2.0 < Z < 2.0).

From Table A.3, P (Z < −2.0) = 0.0228. Due to symmetry of the normal distribu-
tion, we find that

P (Z < −2.0) + P (Z > 2.0) = 2(0.0228) = 0.0456.

As a result, it is anticipated that, on average, 4.56% of manufactured ball bearings
will be scrapped.

x
3.02.99 3.01

σ = 0.005

0.02280.0228

Figure 6.16: Area for Example 6.9.

x
1.5001.108 1.892

σ = 0.2

0.025 0.025

Figure 6.17: Specifications for Example 6.10.

Example 6.10: Gauges are used to reject all components for which a certain dimension is not
within the specification 1.50 ± d. It is known that this measurement is normally
distributed with mean 1.50 and standard deviation 0.2. Determine the value d
such that the specifications “cover” 95% of the measurements.

Solution : From Table A.3 we know that

P (−1.96 < Z < 1.96) = 0.95.

Therefore,

1.96 =
(1.50 + d)− 1.50

0.2
,

from which we obtain

d = (0.2)(1.96) = 0.392.

An illustration of the specifications is shown in Figure 6.17.
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Example 6.11: A certain machine makes electrical resistors having a mean resistance of 40 ohms
and a standard deviation of 2 ohms. Assuming that the resistance follows a normal
distribution and can be measured to any degree of accuracy, what percentage of
resistors will have a resistance exceeding 43 ohms?

Solution : A percentage is found by multiplying the relative frequency by 100%. Since the
relative frequency for an interval is equal to the probability of a value falling in the
interval, we must find the area to the right of x = 43 in Figure 6.18. This can be
done by transforming x = 43 to the corresponding z value, obtaining the area to
the left of z from Table A.3, and then subtracting this area from 1. We find

z =
43− 40

2
= 1.5.

Therefore,

P (X > 43) = P (Z > 1.5) = 1− P (Z < 1.5) = 1− 0.9332 = 0.0668.

Hence, 6.68% of the resistors will have a resistance exceeding 43 ohms.

x
40 43

� 2.0σ

Figure 6.18: Area for Example 6.11.

x
40 43.5

 � 2.0σ

Figure 6.19: Area for Example 6.12.

Example 6.12: Find the percentage of resistances exceeding 43 ohms for Example 6.11 if resistance
is measured to the nearest ohm.

Solution : This problem differs from that in Example 6.11 in that we now assign a measure-
ment of 43 ohms to all resistors whose resistances are greater than 42.5 and less
than 43.5. We are actually approximating a discrete distribution by means of a
continuous normal distribution. The required area is the region shaded to the right
of 43.5 in Figure 6.19. We now find that

z =
43.5− 40

2
= 1.75.

Hence,

P (X > 43.5) = P (Z > 1.75) = 1− P (Z < 1.75) = 1− 0.9599 = 0.0401.

Therefore, 4.01% of the resistances exceed 43 ohms when measured to the nearest
ohm. The difference 6.68% − 4.01% = 2.67% between this answer and that of
Example 6.11 represents all those resistance values greater than 43 and less than
43.5 that are now being recorded as 43 ohms.
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Example 6.13: The average grade for an exam is 74, and the standard deviation is 7. If 12% of
the class is given As, and the grades are curved to follow a normal distribution,
what is the lowest possible A and the highest possible B?

Solution : In this example, we begin with a known area of probability, find the z value, and
then determine x from the formula x = σz + μ. An area of 0.12, corresponding
to the fraction of students receiving As, is shaded in Figure 6.20. We require a z
value that leaves 0.12 of the area to the right and, hence, an area of 0.88 to the
left. From Table A.3, P (Z < 1.18) has the closest value to 0.88, so the desired z
value is 1.18. Hence,

x = (7)(1.18) + 74 = 82.26.

Therefore, the lowest A is 83 and the highest B is 82.

x
74

σ = 7

0.12

Figure 6.20: Area for Example 6.13.

x
74 D6

σ = 7

0.6

Figure 6.21: Area for Example 6.14.

Example 6.14: Refer to Example 6.13 and find the sixth decile.
Solution : The sixth decile, written D6, is the x value that leaves 60% of the area to the left,

as shown in Figure 6.21. From Table A.3 we find P (Z < 0.25) ≈ 0.6, so the desired
z value is 0.25. Now x = (7)(0.25) + 74 = 75.75. Hence, D6 = 75.75. That is, 60%
of the grades are 75 or less.

Exercises

6.1 Given a continuous uniform distribution, show
that

(a) μ = A+B
2

and

(b) σ2 = (B−A)2

12
.

6.2 Suppose X follows a continuous uniform distribu-
tion from 1 to 5. Determine the conditional probability
P (X > 2.5 | X ≤ 4).

6.3 The daily amount of coffee, in liters, dispensed
by a machine located in an airport lobby is a random

variable X having a continuous uniform distribution
with A = 7 and B = 10. Find the probability that
on a given day the amount of coffee dispensed by this
machine will be

(a) at most 8.8 liters;

(b) more than 7.4 liters but less than 9.5 liters;

(c) at least 8.5 liters.

6.4 A bus arrives every 10 minutes at a bus stop. It
is assumed that the waiting time for a particular indi-
vidual is a random variable with a continuous uniform
distribution.
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(a) What is the probability that the individual waits
more than 7 minutes?

(b) What is the probability that the individual waits
between 2 and 7 minutes?

6.5 Given a standard normal distribution, find the
area under the curve that lies

(a) to the left of z = −1.39;

(b) to the right of z = 1.96;

(c) between z = −2.16 and z = −0.65;

(d) to the left of z = 1.43;

(e) to the right of z = −0.89;

(f) between z = −0.48 and z = 1.74.

6.6 Find the value of z if the area under a standard
normal curve

(a) to the right of z is 0.3622;

(b) to the left of z is 0.1131;

(c) between 0 and z, with z > 0, is 0.4838;

(d) between −z and z, with z > 0, is 0.9500.

6.7 Given a standard normal distribution, find the
value of k such that

(a) P (Z > k) = 0.2946;

(b) P (Z < k) = 0.0427;

(c) P (−0.93 < Z < k) = 0.7235.

6.8 Given a normal distribution with μ = 30 and
σ = 6, find

(a) the normal curve area to the right of x = 17;

(b) the normal curve area to the left of x = 22;

(c) the normal curve area between x = 32 and x = 41;

(d) the value of x that has 80% of the normal curve
area to the left;

(e) the two values of x that contain the middle 75% of
the normal curve area.

6.9 Given the normally distributed variable X with
mean 18 and standard deviation 2.5, find

(a) P (X < 15);

(b) the value of k such that P (X < k) = 0.2236;

(c) the value of k such that P (X > k) = 0.1814;

(d) P (17 < X < 21).

6.10 According to Chebyshev’s theorem, the proba-
bility that any random variable assumes a value within
3 standard deviations of the mean is at least 8/9. If it
is known that the probability distribution of a random
variable X is normal with mean μ and variance σ2,
what is the exact value of P (μ− 3σ < X < μ+ 3σ)?

6.11 A soft-drink machine is regulated so that it dis-
charges an average of 200 milliliters per cup. If the
amount of drink is normally distributed with a stan-
dard deviation equal to 15 milliliters,

(a) what fraction of the cups will contain more than
224 milliliters?

(b) what is the probability that a cup contains between
191 and 209 milliliters?

(c) how many cups will probably overflow if 230-
milliliter cups are used for the next 1000 drinks?

(d) below what value do we get the smallest 25% of the
drinks?

6.12 The loaves of rye bread distributed to local
stores by a certain bakery have an average length of 30
centimeters and a standard deviation of 2 centimeters.
Assuming that the lengths are normally distributed,
what percentage of the loaves are

(a) longer than 31.7 centimeters?

(b) between 29.3 and 33.5 centimeters in length?

(c) shorter than 25.5 centimeters?

6.13 A research scientist reports that mice will live an
average of 40 months when their diets are sharply re-
stricted and then enriched with vitamins and proteins.
Assuming that the lifetimes of such mice are normally
distributed with a standard deviation of 6.3 months,
find the probability that a given mouse will live

(a) more than 32 months;

(b) less than 28 months;

(c) between 37 and 49 months.

6.14 The finished inside diameter of a piston ring is
normally distributed with a mean of 10 centimeters and
a standard deviation of 0.03 centimeter.

(a) What proportion of rings will have inside diameters
exceeding 10.075 centimeters?

(b) What is the probability that a piston ring will have
an inside diameter between 9.97 and 10.03 centime-
ters?

(c) Below what value of inside diameter will 15% of the
piston rings fall?

6.15 A lawyer commutes daily from his suburban
home to his midtown office. The average time for a
one-way trip is 24 minutes, with a standard deviation
of 3.8 minutes. Assume the distribution of trip times
to be normally distributed.

(a) What is the probability that a trip will take at least
1/2 hour?

(b) If the office opens at 9:00 A.M. and the lawyer leaves
his house at 8:45 A.M. daily, what percentage of the
time is he late for work?
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(c) If he leaves the house at 8:35 A.M. and coffee is
served at the office from 8:50 A.M. until 9:00 A.M.,
what is the probability that he misses coffee?

(d) Find the length of time above which we find the
slowest 15% of the trips.

(e) Find the probability that 2 of the next 3 trips will
take at least 1/2 hour.

6.16 In the November 1990 issue of Chemical Engi-
neering Progress, a study discussed the percent purity
of oxygen from a certain supplier. Assume that the
mean was 99.61 with a standard deviation of 0.08. As-
sume that the distribution of percent purity was ap-
proximately normal.

(a) What percentage of the purity values would you
expect to be between 99.5 and 99.7?

(b) What purity value would you expect to exceed ex-
actly 5% of the population?

6.17 The average life of a certain type of small motor
is 10 years with a standard deviation of 2 years. The
manufacturer replaces free all motors that fail while
under guarantee. If she is willing to replace only 3% of
the motors that fail, how long a guarantee should be
offered? Assume that the lifetime of a motor follows a
normal distribution.

6.18 The heights of 1000 students are normally dis-
tributed with a mean of 174.5 centimeters and a stan-
dard deviation of 6.9 centimeters. Assuming that the
heights are recorded to the nearest half-centimeter,
how many of these students would you expect to have
heights

(a) less than 160.0 centimeters?

(b) between 171.5 and 182.0 centimeters inclusive?

(c) equal to 175.0 centimeters?

(d) greater than or equal to 188.0 centimeters?

6.19 A company pays its employees an average wage
of $15.90 an hour with a standard deviation of $1.50. If
the wages are approximately normally distributed and
paid to the nearest cent,

(a) what percentage of the workers receive wages be-
tween $13.75 and $16.22 an hour inclusive?

(b) the highest 5% of the employee hourly wages is
greater than what amount?

6.20 The weights of a large number of miniature poo-
dles are approximately normally distributed with a
mean of 8 kilograms and a standard deviation of 0.9
kilogram. If measurements are recorded to the nearest
tenth of a kilogram, find the fraction of these poodles
with weights

(a) over 9.5 kilograms;

(b) of at most 8.6 kilograms;

(c) between 7.3 and 9.1 kilograms inclusive.

6.21 The tensile strength of a certain metal compo-
nent is normally distributed with a mean of 10,000 kilo-
grams per square centimeter and a standard deviation
of 100 kilograms per square centimeter. Measurements
are recorded to the nearest 50 kilograms per square
centimeter.

(a) What proportion of these components exceed
10,150 kilograms per square centimeter in tensile
strength?

(b) If specifications require that all components have
tensile strength between 9800 and 10,200 kilograms
per square centimeter inclusive, what proportion of
pieces would we expect to scrap?

6.22 If a set of observations is normally distributed,
what percent of these differ from the mean by

(a) more than 1.3σ?

(b) less than 0.52σ?

6.23 The IQs of 600 applicants to a certain college
are approximately normally distributed with a mean
of 115 and a standard deviation of 12. If the college
requires an IQ of at least 95, how many of these stu-
dents will be rejected on this basis of IQ, regardless of
their other qualifications? Note that IQs are recorded
to the nearest integers.
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