
Chapter 8

Fundamental Sampling
Distributions and Data Descriptions

8.1 Random Sampling

The outcome of a statistical experiment may be recorded either as a numerical
value or as a descriptive representation. When a pair of dice is tossed and the total
is the outcome of interest, we record a numerical value. However, if the students
of a certain school are given blood tests and the type of blood is of interest, then a
descriptive representation might be more useful. A person’s blood can be classified
in 8 ways: AB, A, B, or O, each with a plus or minus sign, depending on the
presence or absence of the Rh antigen.

In this chapter, we focus on sampling from distributions or populations and
study such important quantities as the sample mean and sample variance, which
will be of vital importance in future chapters. In addition, we attempt to give the
reader an introduction to the role that the sample mean and variance will play
in statistical inference in later chapters. The use of modern high-speed computers
allows the scientist or engineer to greatly enhance his or her use of formal statistical
inference with graphical techniques. Much of the time, formal inference appears
quite dry and perhaps even abstract to the practitioner or to the manager who
wishes to let statistical analysis be a guide to decision-making.

Populations and Samples

We begin this section by discussing the notions of populations and samples. Both
are mentioned in a broad fashion in Chapter 1. However, much more needs to be
presented about them here, particularly in the context of the concept of random
variables. The totality of observations with which we are concerned, whether their
number be finite or infinite, constitutes what we call a population. There was a
time when the word population referred to observations obtained from statistical
studies about people. Today, statisticians use the term to refer to observations
relevant to anything of interest, whether it be groups of people, animals, or all
possible outcomes from some complicated biological or engineering system.
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Definition 8.1: A population consists of the totality of the observations with which we are
concerned.

The number of observations in the population is defined to be the size of the
population. If there are 600 students in the school whom we classified according
to blood type, we say that we have a population of size 600. The numbers on
the cards in a deck, the heights of residents in a certain city, and the lengths of
fish in a particular lake are examples of populations with finite size. In each case,
the total number of observations is a finite number. The observations obtained by
measuring the atmospheric pressure every day, from the past on into the future,
or all measurements of the depth of a lake, from any conceivable position, are
examples of populations whose sizes are infinite. Some finite populations are so
large that in theory we assume them to be infinite. This is true in the case of the
population of lifetimes of a certain type of storage battery being manufactured for
mass distribution throughout the country.

Each observation in a population is a value of a random variableX having some
probability distribution f(x). If one is inspecting items coming off an assembly line
for defects, then each observation in the population might be a value 0 or 1 of the
Bernoulli random variable X with probability distribution

b(x; 1, p) = pxq1−x, x = 0, 1

where 0 indicates a nondefective item and 1 indicates a defective item. Of course,
it is assumed that p, the probability of any item being defective, remains constant
from trial to trial. In the blood-type experiment, the random variable X represents
the type of blood and is assumed to take on values from 1 to 8. Each student is
given one of the values of the discrete random variable. The lives of the storage
batteries are values assumed by a continuous random variable having perhaps a
normal distribution. When we refer hereafter to a “binomial population,” a “nor-
mal population,” or, in general, the “population f(x),” we shall mean a population
whose observations are values of a random variable having a binomial distribution,
a normal distribution, or the probability distribution f(x). Hence, the mean and
variance of a random variable or probability distribution are also referred to as the
mean and variance of the corresponding population.

In the field of statistical inference, statisticians are interested in arriving at con-
clusions concerning a population when it is impossible or impractical to observe the
entire set of observations that make up the population. For example, in attempting
to determine the average length of life of a certain brand of light bulb, it would
be impossible to test all such bulbs if we are to have any left to sell. Exorbitant
costs can also be a prohibitive factor in studying an entire population. Therefore,
we must depend on a subset of observations from the population to help us make
inferences concerning that same population. This brings us to consider the notion
of sampling.

Definition 8.2: A sample is a subset of a population.

If our inferences from the sample to the population are to be valid, we must
obtain samples that are representative of the population. All too often we are
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tempted to choose a sample by selecting the most convenient members of the
population. Such a procedure may lead to erroneous inferences concerning the
population. Any sampling procedure that produces inferences that consistently
overestimate or consistently underestimate some characteristic of the population is
said to be biased. To eliminate any possibility of bias in the sampling procedure,
it is desirable to choose a random sample in the sense that the observations are
made independently and at random.

In selecting a random sample of size n from a population f(x), let us define the
random variable Xi, i = 1, 2, . . . , n, to represent the ith measurement or sample
value that we observe. The random variables X1, X2, . . . , Xn will then constitute
a random sample from the population f(x) with numerical values x1, x2, . . . , xn if
the measurements are obtained by repeating the experiment n independent times
under essentially the same conditions. Because of the identical conditions under
which the elements of the sample are selected, it is reasonable to assume that the n
random variablesX1, X2, . . . , Xn are independent and that each has the same prob-
ability distribution f(x). That is, the probability distributions of X1, X2, . . . , Xn

are, respectively, f(x1), f(x2), . . . , f(xn), and their joint probability distribution
is f(x1, x2, . . . , xn) = f(x1)f(x2) · · · f(xn). The concept of a random sample is
described formally by the following definition.

Definition 8.3: Let X1, X2, . . . , Xn be n independent random variables, each having the same
probability distribution f(x). Define X1, X2, . . . , Xn to be a random sample of
size n from the population f(x) and write its joint probability distribution as

f(x1, x2, . . . , xn) = f(x1)f(x2) · · · f(xn).

If one makes a random selection of n = 8 storage batteries from a manufacturing
process that has maintained the same specification throughout and records the
length of life for each battery, with the first measurement x1 being a value of X1,
the second measurement x2 a value of X2, and so forth, then x1, x2, . . . , x8 are
the values of the random sample X1, X2, . . . , X8. If we assume the population of
battery lives to be normal, the possible values of any Xi, i = 1, 2, . . . , 8, will be
precisely the same as those in the original population, and hence Xi has the same
identical normal distribution as X.

8.2 Some Important Statistics

Our main purpose in selecting random samples is to elicit information about the
unknown population parameters. Suppose, for example, that we wish to arrive at
a conclusion concerning the proportion of coffee-drinkers in the United States who
prefer a certain brand of coffee. It would be impossible to question every coffee-
drinking American in order to compute the value of the parameter p representing
the population proportion. Instead, a large random sample is selected and the
proportion p̂ of people in this sample favoring the brand of coffee in question is
calculated. The value p̂ is now used to make an inference concerning the true
proportion p.

Now, p̂ is a function of the observed values in the random sample; since many
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random samples are possible from the same population, we would expect p̂ to vary
somewhat from sample to sample. That is, p̂ is a value of a random variable that
we represent by P . Such a random variable is called a statistic.

Definition 8.4: Any function of the random variables constituting a random sample is called a
statistic.

Location Measures of a Sample: The Sample Mean, Median, and Mode

In Chapter 4 we introduced the two parameters μ and σ2, which measure the center
of location and the variability of a probability distribution. These are constant
population parameters and are in no way affected or influenced by the observations
of a random sample. We shall, however, define some important statistics that
describe corresponding measures of a random sample. The most commonly used
statistics for measuring the center of a set of data, arranged in order of magnitude,
are the mean, median, and mode. Although the first two of these statistics were
defined in Chapter 1, we repeat the definitions here. Let X1, X2, . . . , Xn represent
n random variables.

(a) Sample mean:

X̄ =
1

n

n∑
i=1

Xi.

Note that the statistic X̄ assumes the value x̄ = 1
n

n∑
i=1

xi when X1 assumes the

value x1, X2 assumes the value x2, and so forth. The term sample mean is applied
to both the statistic X̄ and its computed value x̄.

(b) Sample median:

x̃ =

{
x(n+1)/2, if n is odd,
1
2 (xn/2 + xn/2+1), if n is even.

The sample median is also a location measure that shows the middle value of the
sample. Examples for both the sample mean and the sample median can be found
in Section 1.3. The sample mode is defined as follows.

(c) The sample mode is the value of the sample that occurs most often.

Example 8.1: Suppose a data set consists of the following observations:

0.32 0.53 0.28 0.37 0.47 0.43 0.36 0.42 0.38 0.43.

The sample mode is 0.43, since this value occurs more than any other value.
As we suggested in Chapter 1, a measure of location or central tendency in a

sample does not by itself give a clear indication of the nature of the sample. Thus,
a measure of variability in the sample must also be considered.
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Variability Measures of a Sample: The Sample Variance, Standard Deviation,
and Range

The variability in a sample displays how the observations spread out from the
average. The reader is referred to Chapter 1 for more discussion. It is possible to
have two sets of observations with the same mean or median that differ considerably
in the variability of their measurements about the average.

Consider the following measurements, in liters, for two samples of orange juice
bottled by companies A and B:

Sample A 0.97 1.00 0.94 1.03 1.06
Sample B 1.06 1.01 0.88 0.91 1.14

Both samples have the same mean, 1.00 liter. It is obvious that company A
bottles orange juice with a more uniform content than company B. We say that
the variability, or the dispersion, of the observations from the average is less
for sample A than for sample B. Therefore, in buying orange juice, we would feel
more confident that the bottle we select will be close to the advertised average if
we buy from company A.

In Chapter 1 we introduced several measures of sample variability, including
the sample variance, sample standard deviation, and sample range. In
this chapter, we will focus mainly on the sample variance. Again, let X1, . . . , Xn

represent n random variables.

(a) Sample variance:

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2. (8.2.1)

The computed value of S2 for a given sample is denoted by s2. Note that
S2 is essentially defined to be the average of the squares of the deviations of the
observations from their mean. The reason for using n− 1 as a divisor rather than
the more obvious choice n will become apparent in Chapter 9.

Example 8.2: A comparison of coffee prices at 4 randomly selected grocery stores in San Diego
showed increases from the previous month of 12, 15, 17, and 20 cents for a 1-pound
bag. Find the variance of this random sample of price increases.

Solution : Calculating the sample mean, we get

x̄ =
12 + 15 + 17 + 20

4
= 16 cents.

Therefore,

s2 =
1

3

4∑
i=1

(xi − 16)2 =
(12− 16)2 + (15− 16)2 + (17− 16)2 + (20− 16)2

3

=
(−4)2 + (−1)2 + (1)2 + (4)2

3
=

34

3
.

Whereas the expression for the sample variance best illustrates that S2 is a
measure of variability, an alternative expression does have some merit and thus
the reader should be aware of it. The following theorem contains this expression.
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Theorem 8.1: If S2 is the variance of a random sample of size n, we may write

S2 =
1

n(n− 1)

⎡⎣n n∑
i=1

X2
i −

(
n∑

i=1

Xi

)2
⎤⎦ .

Proof : By definition,

S2 =
1

n− 1

n∑
i=1

(Xi − X̄)2 =
1

n− 1

n∑
i=1

(X2
i − 2X̄Xi + X̄2)

=
1

n− 1

[
n∑

i=1

X2
i − 2X̄

n∑
i=1

Xi + nX̄2

]
.

As in Chapter 1, the sample standard deviation and the sample range are
defined below.

(b) Sample standard deviation:

S =
√
S2,

where S2 is the sample variance.

Let Xmax denote the largest of the Xi values and Xmin the smallest.

(c) Sample range:

R = Xmax −Xmin.

Example 8.3: Find the variance of the data 3, 4, 5, 6, 6, and 7, representing the number of trout
caught by a random sample of 6 fishermen on June 19, 1996, at Lake Muskoka.

Solution : We find that
6∑

i=1

x2
i = 171,

6∑
i=1

xi = 31, and n = 6. Hence,

s2 =
1

(6)(5)
[(6)(171)− (31)2] =

13

6
.

Thus, the sample standard deviation s =
√

13/6 = 1.47 and the sample range is
7− 3 = 4.

Exercises

8.1 Define suitable populations from which the fol-
lowing samples are selected:

(a) Persons in 200 homes in the city of Richmond are
called on the phone and asked to name the candi-
date they favor for election to the school board.

(b) A coin is tossed 100 times and 34 tails are recorded.

(c) Two hundred pairs of a new type of tennis shoe
were tested on the professional tour and, on aver-
age, lasted 4 months.

(d) On five different occasions it took a lawyer 21, 26,
24, 22, and 21 minutes to drive from her suburban
home to her midtown office.
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8.2 The lengths of time, in minutes, that 10 patients
waited in a doctor’s office before receiving treatment
were recorded as follows: 5, 11, 9, 5, 10, 15, 6, 10, 5,
and 10. Treating the data as a random sample, find

(a) the mean;

(b) the median;

(c) the mode.

8.3 The reaction times for a random sample of 9 sub-
jects to a stimulant were recorded as 2.5, 3.6, 3.1, 4.3,
2.9. 2.3, 2.6, 4.1, and 3.4 seconds. Calculate

(a) the mean;

(b) the median.

8.4 The number of tickets issued for traffic violations
by 8 state troopers during the Memorial Day weekend
are 5, 4, 7, 7, 6, 3, 8, and 6.

(a) If these values represent the number of tickets is-
sued by a random sample of 8 state troopers from
Montgomery County in Virginia, define a suitable
population.

(b) If the values represent the number of tickets issued
by a random sample of 8 state troopers from South
Carolina, define a suitable population.

8.5 The numbers of incorrect answers on a true-false
competency test for a random sample of 15 students
were recorded as follows: 2, 1, 3, 0, 1, 3, 6, 0, 3, 3, 5,
2, 1, 4, and 2. Find

(a) the mean;

(b) the median;

(c) the mode.

8.6 Find the mean, median, and mode for the sample
whose observations, 15, 7, 8, 95, 19, 12, 8, 22, and 14,
represent the number of sick days claimed on 9 fed-
eral income tax returns. Which value appears to be
the best measure of the center of these data? State
reasons for your preference.

8.7 A random sample of employees from a local man-
ufacturing plant pledged the following donations, in
dollars, to the United Fund: 100, 40, 75, 15, 20, 100,
75, 50, 30, 10, 55, 75, 25, 50, 90, 80, 15, 25, 45, and
100. Calculate

(a) the mean;

(b) the mode.

8.8 According to ecology writer Jacqueline Killeen,
phosphates contained in household detergents pass
right through our sewer systems, causing lakes to turn
into swamps that eventually dry up into deserts. The
following data show the amount of phosphates per load

of laundry, in grams, for a random sample of various
types of detergents used according to the prescribed
directions:

Laundry Phosphates per Load
Detergent (grams)
A & P Blue Sail 48
Dash 47
Concentrated All 42
Cold Water All 42
Breeze 41
Oxydol 34
Ajax 31
Sears 30
Fab 29
Cold Power 29
Bold 29
Rinso 26

For the given phosphate data, find

(a) the mean;

(b) the median;

(c) the mode.

8.9 Consider the data in Exercise 8.2, find

(a) the range;

(b) the standard deviation.

8.10 For the sample of reaction times in Exercise 8.3,
calculate

(a) the range;

(b) the variance, using the formula of form (8.2.1).

8.11 For the data of Exercise 8.5, calculate the vari-
ance using the formula

(a) of form (8.2.1);

(b) in Theorem 8.1.

8.12 The tar contents of 8 brands of cigarettes se-
lected at random from the latest list released by the
Federal Trade Commission are as follows: 7.3, 8.6, 10.4,
16.1, 12.2, 15.1, 14.5, and 9.3 milligrams. Calculate

(a) the mean;

(b) the variance.

8.13 The grade-point averages of 20 college seniors
selected at random from a graduating class are as fol-
lows:

3.2 1.9 2.7 2.4 2.8
2.9 3.8 3.0 2.5 3.3
1.8 2.5 3.7 2.8 2.0
3.2 2.3 2.1 2.5 1.9

Calculate the standard deviation.

8.14 (a) Show that the sample variance is unchanged
if a constant c is added to or subtracted from each
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value in the sample.

(b) Show that the sample variance becomes c2 times
its original value if each observation in the sample
is multiplied by c.

8.15 Verify that the variance of the sample 4, 9, 3,
6, 4, and 7 is 5.1, and using this fact, along with the
results of Exercise 8.14, find

(a) the variance of the sample 12, 27, 9, 18, 12, and 21;

(b) the variance of the sample 9, 14, 8, 11, 9, and 12.

8.16 In the 2004-05 football season, University of
Southern California had the following score differences
for the 13 games it played.

11 49 32 3 6 38 38 30 8 40 31 5 36

Find

(a) the mean score difference;

(b) the median score difference.

8.3 Sampling Distributions

The field of statistical inference is basically concerned with generalizations and
predictions. For example, we might claim, based on the opinions of several people
interviewed on the street, that in a forthcoming election 60% of the eligible voters
in the city of Detroit favor a certain candidate. In this case, we are dealing with
a random sample of opinions from a very large finite population. As a second il-
lustration we might state that the average cost to build a residence in Charleston,
South Carolina, is between $330,000 and $335,000, based on the estimates of 3
contractors selected at random from the 30 now building in this city. The popu-
lation being sampled here is again finite but very small. Finally, let us consider a
soft-drink machine designed to dispense, on average, 240 milliliters per drink. A
company official who computes the mean of 40 drinks obtains x̄ = 236 milliliters
and, on the basis of this value, decides that the machine is still dispensing drinks
with an average content of μ = 240 milliliters. The 40 drinks represent a sam-
ple from the infinite population of possible drinks that will be dispensed by this
machine.

Inference about the Population from Sample Information

In each of the examples above, we computed a statistic from a sample selected from
the population, and from this statistic we made various statements concerning the
values of population parameters that may or may not be true. The company official
made the decision that the soft-drink machine dispenses drinks with an average
content of 240 milliliters, even though the sample mean was 236 milliliters, because
he knows from sampling theory that, if μ = 240 milliliters, such a sample value
could easily occur. In fact, if he ran similar tests, say every hour, he would expect
the values of the statistic x̄ to fluctuate above and below μ = 240 milliliters. Only
when the value of x̄ is substantially different from 240 milliliters will the company
official initiate action to adjust the machine.

Since a statistic is a random variable that depends only on the observed sample,
it must have a probability distribution.

Definition 8.5: The probability distribution of a statistic is called a sampling distribution.

The sampling distribution of a statistic depends on the distribution of the pop-
ulation, the size of the samples, and the method of choosing the samples. In the
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remainder of this chapter we study several of the important sampling distribu-
tions of frequently used statistics. Applications of these sampling distributions to
problems of statistical inference are considered throughout most of the remaining
chapters. The probability distribution of X̄ is called the sampling distribution
of the mean.

What Is the Sampling Distribution of X̄?

We should view the sampling distributions of X̄ and S2 as the mechanisms from
which we will be able to make inferences on the parameters μ and σ2. The sam-
pling distribution of X̄ with sample size n is the distribution that results when
an experiment is conducted over and over (always with sample size n) and
the many values of X̄ result. This sampling distribution, then, describes the
variability of sample averages around the population mean μ. In the case of the
soft-drink machine, knowledge of the sampling distribution of X̄ arms the analyst
with the knowledge of a “typical” discrepancy between an observed x̄ value and
true μ. The same principle applies in the case of the distribution of S2. The sam-
pling distribution produces information about the variability of s2 values around
σ2 in repeated experiments.

8.4 Sampling Distribution of Means and the Central Limit
Theorem

The first important sampling distribution to be considered is that of the mean
X̄. Suppose that a random sample of n observations is taken from a normal
population with mean μ and variance σ2. Each observation Xi, i = 1, 2, . . . , n, of
the random sample will then have the same normal distribution as the population
being sampled. Hence, by the reproductive property of the normal distribution
established in Theorem 7.11, we conclude that

X̄ =
1

n
(X1 +X2 + · · ·+Xn)

has a normal distribution with mean

μX̄ =
1

n
(μ+ μ+ · · ·+ μ︸ ︷︷ ︸

n terms

) = μ and variance σ2
X̄ =

1

n2
(σ2 + σ2 + · · ·+ σ2︸ ︷︷ ︸

n terms

) =
σ2

n
.

If we are sampling from a population with unknown distribution, either finite
or infinite, the sampling distribution of X̄ will still be approximately normal with
mean μ and variance σ2/n, provided that the sample size is large. This amazing
result is an immediate consequence of the following theorem, called the Central
Limit Theorem.



234 Chapter 8 Fundamental Sampling Distributions and Data Descriptions

The Central Limit Theorem

Theorem 8.2: Central Limit Theorem: If X̄ is the mean of a random sample of size n taken
from a population with mean μ and finite variance σ2, then the limiting form of
the distribution of

Z =
X̄ − μ

σ/
√
n
,

as n → ∞, is the standard normal distribution n(z; 0, 1).

The normal approximation for X̄ will generally be good if n ≥ 30, provided
the population distribution is not terribly skewed. If n < 30, the approximation is
good only if the population is not too different from a normal distribution and, as
stated above, if the population is known to be normal, the sampling distribution
of X̄ will follow a normal distribution exactly, no matter how small the size of the
samples.

The sample size n = 30 is a guideline to use for the Central Limit Theorem.
However, as the statement of the theorem implies, the presumption of normality
on the distribution of X̄ becomes more accurate as n grows larger. In fact, Figure
8.1 illustrates how the theorem works. It shows how the distribution of X̄ becomes
closer to normal as n grows larger, beginning with the clearly nonsymmetric dis-
tribution of an individual observation (n = 1). It also illustrates that the mean of
X̄ remains μ for any sample size and the variance of X̄ gets smaller as n increases.

μ

Large n (near normal)

Small to moderate n

n = 1 (population)

Figure 8.1: Illustration of the Central Limit Theorem (distribution of X̄ for n = 1,
moderate n, and large n).

Example 8.4: An electrical firm manufactures light bulbs that have a length of life that is ap-
proximately normally distributed, with mean equal to 800 hours and a standard
deviation of 40 hours. Find the probability that a random sample of 16 bulbs will
have an average life of less than 775 hours.

Solution : The sampling distribution of X̄ will be approximately normal, with μX̄ = 800 and
σX̄ = 40/

√
16 = 10. The desired probability is given by the area of the shaded
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region in Figure 8.2.

x
775 800

σ x = 10

Figure 8.2: Area for Example 8.4.

Corresponding to x̄ = 775, we find that

z =
775− 800

10
= −2.5,

and therefore

P (X̄ < 775) = P (Z < −2.5) = 0.0062.

Inferences on the Population Mean

One very important application of the Central Limit Theorem is the determination
of reasonable values of the population mean μ. Topics such as hypothesis testing,
estimation, quality control, and many others make use of the Central Limit Theo-
rem. The following example illustrates the use of the Central Limit Theorem with
regard to its relationship with μ, the mean of the population, although the formal
application to the foregoing topics is relegated to future chapters.

In the following case study, an illustration is given which draws an inference
that makes use of the sampling distribution of X̄. In this simple illustration, μ
and σ are both known. The Central Limit Theorem and the general notion of
sampling distributions are often used to produce evidence about some important
aspect of a distribution such as a parameter of the distribution. In the case of the
Central Limit Theorem, the parameter of interest is the mean μ. The inference
made concerning μ may take one of many forms. Often there is a desire on the part
of the analyst that the data (in the form of x̄) support (or not) some predetermined
conjecture concerning the value of μ. The use of what we know about the sampling
distribution can contribute to answering this type of question. In the following case
study, the concept of hypothesis testing leads to a formal objective that we will
highlight in future chapters.

Case Study 8.1: Automobile Parts:An important manufacturing process produces cylindrical com-
ponent parts for the automotive industry. It is important that the process produce
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parts having a mean diameter of 5.0 millimeters. The engineer involved conjec-
tures that the population mean is 5.0 millimeters. An experiment is conducted in
which 100 parts produced by the process are selected randomly and the diameter
measured on each. It is known that the population standard deviation is σ = 0.1
millimeter. The experiment indicates a sample average diameter of x̄ = 5.027 mil-
limeters. Does this sample information appear to support or refute the engineer’s
conjecture?

Solution : This example reflects the kind of problem often posed and solved with hypothesis
testing machinery introduced in future chapters. We will not use the formality
associated with hypothesis testing here, but we will illustrate the principles and
logic used.

Whether the data support or refute the conjecture depends on the probability
that data similar to those obtained in this experiment (x̄ = 5.027) can readily
occur when in fact μ = 5.0 (Figure 8.3). In other words, how likely is it that
one can obtain x̄ ≥ 5.027 with n = 100 if the population mean is μ = 5.0? If
this probability suggests that x̄ = 5.027 is not unreasonable, the conjecture is not
refuted. If the probability is quite low, one can certainly argue that the data do not
support the conjecture that μ = 5.0. The probability that we choose to compute
is given by P (|X̄ − 5| ≥ 0.027).

x
4.973 5.0275.0

Figure 8.3: Area for Case Study 8.1.

In other words, if the mean μ is 5, what is the chance that X̄ will deviate by
as much as 0.027 millimeter?

P (|X̄ − 5| ≥ 0.027) = P (X̄ − 5 ≥ 0.027) + P (X̄ − 5 ≤ −0.027)

= 2P

(
X̄ − 5

0.1/
√
100

≥ 2.7

)
.

Here we are simply standardizing X̄ according to the Central Limit Theorem. If
the conjecture μ = 5.0 is true, X̄−5

0.1/
√
100

should follow N(0, 1). Thus,

2P

(
X̄ − 5

0.1/
√
100

≥ 2.7

)
= 2P (Z ≥ 2.7) = 2(0.0035) = 0.007.



8.4 Sampling Distribution of Means and the Central Limit Theorem 237

Therefore, one would experience by chance that an x̄ would be 0.027 millimeter
from the mean in only 7 in 1000 experiments. As a result, this experiment with
x̄ = 5.027 certainly does not give supporting evidence to the conjecture that μ =
5.0. In fact, it strongly refutes the conjecture!

Example 8.5: Traveling between two campuses of a university in a city via shuttle bus takes,
on average, 28 minutes with a standard deviation of 5 minutes. In a given week,
a bus transported passengers 40 times. What is the probability that the average
transport time was more than 30 minutes? Assume the mean time is measured to
the nearest minute.

Solution : In this case, μ = 28 and σ = 3. We need to calculate the probability P (X̄ > 30)
with n = 40. Since the time is measured on a continuous scale to the nearest
minute, an x̄ greater than 30 is equivalent to x̄ ≥ 30.5. Hence,

P (X̄ > 30) = P

(
X̄ − 28

5/
√
40

≥ 30.5− 28

5/
√
40

)
= P (Z ≥ 3.16) = 0.0008.

There is only a slight chance that the average time of one bus trip will exceed 30
minutes. An illustrative graph is shown in Figure 8.4.

x
30.528.0

Figure 8.4: Area for Example 8.5.

Sampling Distribution of the Difference between Two Means

The illustration in Case Study 8.1 deals with notions of statistical inference on a
single mean μ. The engineer was interested in supporting a conjecture regarding
a single population mean. A far more important application involves two popula-
tions. A scientist or engineer may be interested in a comparative experiment in
which two manufacturing methods, 1 and 2, are to be compared. The basis for
that comparison is μ1 − μ2, the difference in the population means.

Suppose that we have two populations, the first with mean μ1 and variance
σ2
1 , and the second with mean μ2 and variance σ2

2 . Let the statistic X̄1 represent
the mean of a random sample of size n1 selected from the first population, and
the statistic X̄2 represent the mean of a random sample of size n2 selected from
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the second population, independent of the sample from the first population. What
can we say about the sampling distribution of the difference X̄1 − X̄2 for repeated
samples of size n1 and n2? According to Theorem 8.2, the variables X̄1 and X̄2

are both approximately normally distributed with means μ1 and μ2 and variances
σ2
1/n1 and σ2

2/n2, respectively. This approximation improves as n1 and n2 increase.
By choosing independent samples from the two populations we ensure that the
variables X̄1 and X̄2 will be independent, and then using Theorem 7.11, with
a1 = 1 and a2 = −1, we can conclude that X̄1 − X̄2 is approximately normally
distributed with mean

μX̄1−X̄2
= μX̄1

− μX̄2
= μ1 − μ2

and variance

σ2
X̄1−X̄2

= σ2
X̄1

+ σ2
X̄2

=
σ2
1

n1
+

σ2
2

n2
.

The Central Limit Theorem can be easily extended to the two-sample, two-population
case.

Theorem 8.3: If independent samples of size n1 and n2 are drawn at random from two popu-
lations, discrete or continuous, with means μ1 and μ2 and variances σ2

1 and σ2
2 ,

respectively, then the sampling distribution of the differences of means, X̄1 − X̄2,
is approximately normally distributed with mean and variance given by

μX̄1−X̄2
= μ1 − μ2 and σ2

X̄1−X̄2
=

σ2
1

n1
+

σ2
2

n2
.

Hence,

Z =
(X̄1 − X̄2)− (μ1 − μ2)√

(σ2
1/n1) + (σ2

2/n2)

is approximately a standard normal variable.

If both n1 and n2 are greater than or equal to 30, the normal approximation
for the distribution of X̄1 − X̄2 is very good when the underlying distributions
are not too far away from normal. However, even when n1 and n2 are less than
30, the normal approximation is reasonably good except when the populations are
decidedly nonnormal. Of course, if both populations are normal, then X̄1− X̄2 has
a normal distribution no matter what the sizes of n1 and n2 are.

The utility of the sampling distribution of the difference between two sample
averages is very similar to that described in Case Study 8.1 on page 235 for the case
of a single mean. Case Study 8.2 that follows focuses on the use of the difference
between two sample means to support (or not) the conjecture that two population
means are the same.

Case Study 8.2: Paint Drying Time: Two independent experiments are run in which two different
types of paint are compared. Eighteen specimens are painted using type A, and
the drying time, in hours, is recorded for each. The same is done with type B.
The population standard deviations are both known to be 1.0.
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Assuming that the mean drying time is equal for the two types of paint, find
P (X̄A− X̄B > 1.0), where X̄A and X̄B are average drying times for samples of size
nA = nB = 18.

Solution : From the sampling distribution of X̄A − X̄B , we know that the distribution is
approximately normal with mean

μX̄A−X̄B
= μA − μB = 0

and variance

σ2
X̄A−X̄B

=
σ2
A

nA
+

σ2
B

nB
=

1

18
+

1

18
=

1

9
.

xA − xB
μ μA − B = 0 1.0

σ XA−XB
= 1 9

Figure 8.5: Area for Case Study 8.2.

The desired probability is given by the shaded region in Figure 8.5. Corre-
sponding to the value X̄A − X̄B = 1.0, we have

z =
1− (μA − μB)√

1/9
=

1− 0√
1/9

= 3.0;

so

P (Z > 3.0) = 1− P (Z < 3.0) = 1− 0.9987 = 0.0013.

What Do We Learn from Case Study 8.2?

The machinery in the calculation is based on the presumption that μA = μB .
Suppose, however, that the experiment is actually conducted for the purpose of
drawing an inference regarding the equality of μA and μB , the two population
mean drying times. If the two averages differ by as much as 1 hour (or more),
this clearly is evidence that would lead one to conclude that the population mean
drying time is not equal for the two types of paint. On the other hand, suppose
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that the difference in the two sample averages is as small as, say, 15 minutes. If
μA = μB,

P [(X̄A − X̄B) > 0.25 hour] = P

(
X̄A − X̄B − 0√

1/9
>

3

4

)

= P

(
Z >

3

4

)
= 1− P (Z < 0.75) = 1− 0.7734 = 0.2266.

Since this probability is not low, one would conclude that a difference in sample
means of 15 minutes can happen by chance (i.e., it happens frequently even though
μA = μB). As a result, that type of difference in average drying times certainly is
not a clear signal that μA �= μB.

As we indicated earlier, a more detailed formalism regarding this and other
types of statistical inference (e.g., hypothesis testing) will be supplied in future
chapters. The Central Limit Theorem and sampling distributions discussed in the
next three sections will also play a vital role.

Example 8.6: The television picture tubes of manufacturer A have a mean lifetime of 6.5 years
and a standard deviation of 0.9 year, while those of manufacturer B have a mean
lifetime of 6.0 years and a standard deviation of 0.8 year. What is the probability
that a random sample of 36 tubes from manufacturer A will have a mean lifetime
that is at least 1 year more than the mean lifetime of a sample of 49 tubes from
manufacturer B?

Solution : We are given the following information:

Population 1 Population 2
μ1 = 6.5 μ2 = 6.0
σ1 = 0.9 σ2 = 0.8
n1 = 36 n2 = 49

If we use Theorem 8.3, the sampling distribution of X̄1 − X̄2 will be approxi-
mately normal and will have a mean and standard deviation

μX̄1−X̄2
= 6.5− 6.0 = 0.5 and σX̄1−X̄2

=

√
0.81

36
+

0.64

49
= 0.189.

The probability that the mean lifetime for 36 tubes from manufacturer A will
be at least 1 year longer than the mean lifetime for 49 tubes from manufacturer B
is given by the area of the shaded region in Figure 8.6. Corresponding to the value
x̄1 − x̄2 = 1.0, we find that

z =
1.0− 0.5

0.189
= 2.65,

and hence

P (X̄1 − X̄2 ≥ 1.0) = P (Z > 2.65) = 1− P (Z < 2.65)

= 1− 0.9960 = 0.0040.
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0.5 1.0
x1 � x2

x1� x2 
� 0.189σ

Figure 8.6: Area for Example 8.6.

More on Sampling Distribution of Means—Normal Approximation to
the Binomial Distribution

Section 6.5 presented the normal approximation to the binomial distribution at
length. Conditions were given on the parameters n and p for which the distribution
of a binomial random variable can be approximated by the normal distribution.
Examples and exercises reflected the importance of the concept of the “normal
approximation.” It turns out that the Central Limit Theorem sheds even more
light on how and why this approximation works. We certainly know that a binomial
random variable is the number X of successes in n independent trials, where the
outcome of each trial is binary. We also illustrated in Chapter 1 that the proportion
computed in such an experiment is an average of a set of 0s and 1s. Indeed, while
the proportion X/n is an average, X is the sum of this set of 0s and 1s, and both
X and X/n are approximately normal if n is sufficiently large. Of course, from
what we learned in Chapter 6, we know that there are conditions on n and p that
affect the quality of the approximation, namely np ≥ 5 and nq ≥ 5.

Exercises

8.17 If all possible samples of size 16 are drawn from
a normal population with mean equal to 50 and stan-
dard deviation equal to 5, what is the probability that a
sample mean X̄ will fall in the interval from μX̄−1.9σX̄

to μX̄ −0.4σX̄? Assume that the sample means can be
measured to any degree of accuracy.

8.18 If the standard deviation of the mean for the
sampling distribution of random samples of size 36
from a large or infinite population is 2, how large must
the sample size become if the standard deviation is to
be reduced to 1.2?

8.19 A certain type of thread is manufactured with a
mean tensile strength of 78.3 kilograms and a standard
deviation of 5.6 kilograms. How is the variance of the

sample mean changed when the sample size is

(a) increased from 64 to 196?

(b) decreased from 784 to 49?

8.20 Given the discrete uniform population

f(x) =

{
1
3
, x = 2, 4, 6,

0, elsewhere,

find the probability that a random sample of size 54,
selected with replacement, will yield a sample mean
greater than 4.1 but less than 4.4. Assume the means
are measured to the nearest tenth.

8.21 A soft-drink machine is regulated so that the
amount of drink dispensed averages 240 milliliters with
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a standard deviation of 15 milliliters. Periodically, the
machine is checked by taking a sample of 40 drinks
and computing the average content. If the mean of the
40 drinks is a value within the interval μX̄ ± 2σX̄ , the
machine is thought to be operating satisfactorily; oth-
erwise, adjustments are made. In Section 8.3, the com-
pany official found the mean of 40 drinks to be x̄ = 236
milliliters and concluded that the machine needed no
adjustment. Was this a reasonable decision?

8.22 The heights of 1000 students are approximately
normally distributed with a mean of 174.5 centimeters
and a standard deviation of 6.9 centimeters. Suppose
200 random samples of size 25 are drawn from this pop-
ulation and the means recorded to the nearest tenth of
a centimeter. Determine

(a) the mean and standard deviation of the sampling
distribution of X̄;

(b) the number of sample means that fall between 172.5
and 175.8 centimeters inclusive;

(c) the number of sample means falling below 172.0
centimeters.

8.23 The random variable X, representing the num-
ber of cherries in a cherry puff, has the following prob-
ability distribution:

x 4 5 6 7
P (X = x) 0.2 0.4 0.3 0.1

(a) Find the mean μ and the variance σ2 of X.

(b) Find the mean μX̄ and the variance σ2
X̄ of the mean

X̄ for random samples of 36 cherry puffs.

(c) Find the probability that the average number of
cherries in 36 cherry puffs will be less than 5.5.

8.24 If a certain machine makes electrical resistors
having a mean resistance of 40 ohms and a standard
deviation of 2 ohms, what is the probability that a
random sample of 36 of these resistors will have a com-
bined resistance of more than 1458 ohms?

8.25 The average life of a bread-making machine is 7
years, with a standard deviation of 1 year. Assuming
that the lives of these machines follow approximately
a normal distribution, find

(a) the probability that the mean life of a random sam-
ple of 9 such machines falls between 6.4 and 7.2
years;

(b) the value of x to the right of which 15% of the
means computed from random samples of size 9
would fall.

8.26 The amount of time that a drive-through bank
teller spends on a customer is a random variable with
a mean μ = 3.2 minutes and a standard deviation
σ = 1.6 minutes. If a random sample of 64 customers

is observed, find the probability that their mean time
at the teller’s window is

(a) at most 2.7 minutes;

(b) more than 3.5 minutes;

(c) at least 3.2 minutes but less than 3.4 minutes.

8.27 In a chemical process, the amount of a certain
type of impurity in the output is difficult to control
and is thus a random variable. Speculation is that the
population mean amount of the impurity is 0.20 gram
per gram of output. It is known that the standard
deviation is 0.1 gram per gram. An experiment is con-
ducted to gain more insight regarding the speculation
that μ = 0.2. The process is run on a lab scale 50
times and the sample average x̄ turns out to be 0.23
gram per gram. Comment on the speculation that the
mean amount of impurity is 0.20 gram per gram. Make
use of the Central Limit Theorem in your work.

8.28 A random sample of size 25 is taken from a nor-
mal population having a mean of 80 and a standard
deviation of 5. A second random sample of size 36
is taken from a different normal population having a
mean of 75 and a standard deviation of 3. Find the
probability that the sample mean computed from the
25 measurements will exceed the sample mean com-
puted from the 36 measurements by at least 3.4 but
less than 5.9. Assume the difference of the means to
be measured to the nearest tenth.

8.29 The distribution of heights of a certain breed of
terrier has a mean of 72 centimeters and a standard de-
viation of 10 centimeters, whereas the distribution of
heights of a certain breed of poodle has a mean of 28
centimeters with a standard deviation of 5 centimeters.
Assuming that the sample means can be measured to
any degree of accuracy, find the probability that the
sample mean for a random sample of heights of 64 ter-
riers exceeds the sample mean for a random sample of
heights of 100 poodles by at most 44.2 centimeters.

8.30 The mean score for freshmen on an aptitude test
at a certain college is 540, with a standard deviation of
50. Assume the means to be measured to any degree
of accuracy. What is the probability that two groups
selected at random, consisting of 32 and 50 students,
respectively, will differ in their mean scores by

(a) more than 20 points?

(b) an amount between 5 and 10 points?

8.31 Consider Case Study 8.2 on page 238. Suppose
18 specimens were used for each type of paint in an
experiment and x̄A− x̄B , the actual difference in mean
drying time, turned out to be 1.0.

(a) Does this seem to be a reasonable result if the
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two population mean drying times truly are equal?
Make use of the result in the solution to Case Study
8.2.

(b) If someone did the experiment 10,000 times un-
der the condition that μA = μB , in how many of
those 10,000 experiments would there be a differ-
ence x̄A − x̄B that was as large as (or larger than)
1.0?

8.32 Two different box-filling machines are used to fill
cereal boxes on an assembly line. The critical measure-
ment influenced by these machines is the weight of the
product in the boxes. Engineers are quite certain that
the variance of the weight of product is σ2 = 1 ounce.
Experiments are conducted using both machines with
sample sizes of 36 each. The sample averages for ma-
chines A and B are x̄A = 4.5 ounces and x̄B = 4.7
ounces. Engineers are surprised that the two sample
averages for the filling machines are so different.

(a) Use the Central Limit Theorem to determine

P (X̄B − X̄A ≥ 0.2)

under the condition that μA = μB .

(b) Do the aforementioned experiments seem to, in any
way, strongly support a conjecture that the popu-
lation means for the two machines are different?
Explain using your answer in (a).

8.33 The chemical benzene is highly toxic to hu-
mans. However, it is used in the manufacture of many
medicine dyes, leather, and coverings. Government
regulations dictate that for any production process in-
volving benzene, the water in the output of the process
must not exceed 7950 parts per million (ppm) of ben-
zene. For a particular process of concern, the water
sample was collected by a manufacturer 25 times ran-
domly and the sample average x̄ was 7960 ppm. It is
known from historical data that the standard deviation
σ is 100 ppm.

(a) What is the probability that the sample average in
this experiment would exceed the government limit
if the population mean is equal to the limit? Use
the Central Limit Theorem.

(b) Is an observed x̄ = 7960 in this experiment firm
evidence that the population mean for the process

exceeds the government limit? Answer your ques-
tion by computing

P (X̄ ≥ 7960 | μ = 7950).

Assume that the distribution of benzene concentra-
tion is normal.

8.34 Two alloys A and B are being used to manufac-
ture a certain steel product. An experiment needs to
be designed to compare the two in terms of maximum
load capacity in tons (the maximum weight that can
be tolerated without breaking). It is known that the
two standard deviations in load capacity are equal at
5 tons each. An experiment is conducted in which 30
specimens of each alloy (A and B) are tested and the
results recorded as follows:

x̄A = 49.5, x̄B = 45.5; x̄A − x̄B = 4.

The manufacturers of alloy A are convinced that this
evidence shows conclusively that μA > μB and strongly
supports the claim that their alloy is superior. Man-
ufacturers of alloy B claim that the experiment could
easily have given x̄A − x̄B = 4 even if the two popula-
tion means are equal. In other words, “the results are
inconclusive!”

(a) Make an argument that manufacturers of alloy B
are wrong. Do it by computing

P (X̄A − X̄B > 4 | μA = μB).

(b) Do you think these data strongly support alloy A?

8.35 Consider the situation described in Example 8.4
on page 234. Do these results prompt you to question
the premise that μ = 800 hours? Give a probabilis-
tic result that indicates how rare an event X̄ ≤ 775 is
when μ = 800. On the other hand, how rare would it
be if μ truly were, say, 760 hours?

8.36 Let X1, X2, . . . , Xn be a random sample from a
distribution that can take on only positive values. Use
the Central Limit Theorem to produce an argument
that if n is sufficiently large, then Y = X1X2 · · ·Xn

has approximately a lognormal distribution.

8.5 Sampling Distribution of S2

In the preceding section we learned about the sampling distribution of X̄. The
Central Limit Theorem allowed us to make use of the fact that

X̄ − μ

σ/
√
n
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tends toward N(0, 1) as the sample size grows large. Sampling distributions of
important statistics allow us to learn information about parameters. Usually, the
parameters are the counterpart to the statistics in question. For example, if an
engineer is interested in the population mean resistance of a certain type of resistor,
the sampling distribution of X̄ will be exploited once the sample information is
gathered. On the other hand, if the variability in resistance is to be studied,
clearly the sampling distribution of S2 will be used in learning about the parametric
counterpart, the population variance σ2.

If a random sample of size n is drawn from a normal population with mean
μ and variance σ2, and the sample variance is computed, we obtain a value of
the statistic S2. We shall proceed to consider the distribution of the statistic
(n− 1)S2/σ2.

By the addition and subtraction of the sample mean X̄, it is easy to see that
n∑

i=1

(Xi − μ)2 =
n∑

i=1

[(Xi − X̄) + (X̄ − μ)]2

=
n∑

i=1

(Xi − X̄)2 +
n∑

i=1

(X̄ − μ)2 + 2(X̄ − μ)
n∑

i=1

(Xi − X̄)

=
n∑

i=1

(Xi − X̄)2 + n(X̄ − μ)2.

Dividing each term of the equality by σ2 and substituting (n−1)S2 for
n∑

i=1

(Xi−X̄)2,

we obtain

1

σ2

n∑
i=1

(Xi − μ)2 =
(n− 1)S2

σ2
+

(X̄ − μ)2

σ2/n
.

Now, according to Corollary 7.1 on page 222, we know that
n∑

i=1

(Xi − μ)2

σ2

is a chi-squared random variable with n degrees of freedom. We have a chi-squared
random variable with n degrees of freedom partitioned into two components. Note
that in Section 6.7 we showed that a chi-squared distribution is a special case of
a gamma distribution. The second term on the right-hand side is Z2, which is
a chi-squared random variable with 1 degree of freedom, and it turns out that
(n − 1)S2/σ2 is a chi-squared random variable with n − 1 degree of freedom. We
formalize this in the following theorem.

Theorem 8.4: If S2 is the variance of a random sample of size n taken from a normal population
having the variance σ2, then the statistic

χ2 =
(n− 1)S2

σ2
=

n∑
i=1

(Xi − X̄)2

σ2

has a chi-squared distribution with v = n− 1 degrees of freedom.

The values of the random variable χ2 are calculated from each sample by the



8.5 Sampling Distribution of S2 245

formula

χ2 =
(n− 1)s2

σ2
.

The probability that a random sample produces a χ2 value greater than some
specified value is equal to the area under the curve to the right of this value. It is
customary to let χ2

α represent the χ2 value above which we find an area of α. This
is illustrated by the shaded region in Figure 8.7.

0
χ

χ

2  

2

α

α

Figure 8.7: The chi-squared distribution.

Table A.5 gives values of χ2
α for various values of α and v. The areas, α, are

the column headings; the degrees of freedom, v, are given in the left column; and
the table entries are the χ2 values. Hence, the χ2 value with 7 degrees of freedom,
leaving an area of 0.05 to the right, is χ2

0.05 = 14.067. Owing to lack of symmetry,
we must also use the tables to find χ2

0.95 = 2.167 for v = 7.
Exactly 95% of a chi-squared distribution lies between χ2

0.975 and χ2
0.025. A χ2

value falling to the right of χ2
0.025 is not likely to occur unless our assumed value of

σ2 is too small. Similarly, a χ2 value falling to the left of χ2
0.975 is unlikely unless

our assumed value of σ2 is too large. In other words, it is possible to have a χ2

value to the left of χ2
0.975 or to the right of χ2

0.025 when σ2 is correct, but if this
should occur, it is more probable that the assumed value of σ2 is in error.

Example 8.7: A manufacturer of car batteries guarantees that the batteries will last, on average,
3 years with a standard deviation of 1 year. If five of these batteries have lifetimes
of 1.9, 2.4, 3.0, 3.5, and 4.2 years, should the manufacturer still be convinced that
the batteries have a standard deviation of 1 year? Assume that the battery lifetime
follows a normal distribution.

Solution : We first find the sample variance using Theorem 8.1,

s2 =
(5)(48.26)− (15)2

(5)(4)
= 0.815.

Then

χ2 =
(4)(0.815)

1
= 3.26
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is a value from a chi-squared distribution with 4 degrees of freedom. Since 95%
of the χ2 values with 4 degrees of freedom fall between 0.484 and 11.143, the
computed value with σ2 = 1 is reasonable, and therefore the manufacturer has no
reason to suspect that the standard deviation is other than 1 year.

Degrees of Freedom as a Measure of Sample Information

Recall from Corollary 7.1 in Section 7.3 that

n∑
i=1

(Xi − μ)2

σ2

has a χ2-distribution with n degrees of freedom. Note also Theorem 8.4, which
indicates that the random variable

(n− 1)S2

σ2
=

n∑
i=1

(Xi − X̄)2

σ2

has a χ2-distribution with n−1 degrees of freedom. The reader may also recall that
the term degrees of freedom, used in this identical context, is discussed in Chapter
1.

As we indicated earlier, the proof of Theorem 8.4 will not be given. However,
the reader can view Theorem 8.4 as indicating that when μ is not known and one
considers the distribution of

n∑
i=1

(Xi − X̄)2

σ2
,

there is 1 less degree of freedom, or a degree of freedom is lost in the estimation
of μ (i.e., when μ is replaced by x̄). In other words, there are n degrees of free-
dom, or independent pieces of information, in the random sample from the normal
distribution. When the data (the values in the sample) are used to compute the
mean, there is 1 less degree of freedom in the information used to estimate σ2.
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