
Chapter 10

One- and Two-Sample Tests of
Hypotheses

10.1 Statistical Hypotheses: General Concepts

Often, the problem confronting the scientist or engineer is not so much the es-
timation of a population parameter, as discussed in Chapter 9, but rather the
formation of a data-based decision procedure that can produce a conclusion about
some scientific system. For example, a medical researcher may decide on the basis
of experimental evidence whether coffee drinking increases the risk of cancer in
humans; an engineer might have to decide on the basis of sample data whether
there is a difference between the accuracy of two kinds of gauges; or a sociologist
might wish to collect appropriate data to enable him or her to decide whether
a person’s blood type and eye color are independent variables. In each of these
cases, the scientist or engineer postulates or conjectures something about a system.
In addition, each must make use of experimental data and make a decision based
on the data. In each case, the conjecture can be put in the form of a statistical
hypothesis. Procedures that lead to the acceptance or rejection of statistical hy-
potheses such as these comprise a major area of statistical inference. First, let us
define precisely what we mean by a statistical hypothesis.

Definition 10.1: A statistical hypothesis is an assertion or conjecture concerning one or more
populations.

The truth or falsity of a statistical hypothesis is never known with absolute
certainty unless we examine the entire population. This, of course, would be im-
practical in most situations. Instead, we take a random sample from the population
of interest and use the data contained in this sample to provide evidence that either
supports or does not support the hypothesis. Evidence from the sample that is
inconsistent with the stated hypothesis leads to a rejection of the hypothesis.
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The Role of Probability in Hypothesis Testing

It should be made clear to the reader that the decision procedure must include an
awareness of the probability of a wrong conclusion. For example, suppose that the
hypothesis postulated by the engineer is that the fraction defective p in a certain
process is 0.10. The experiment is to observe a random sample of the product
in question. Suppose that 100 items are tested and 12 items are found defective.
It is reasonable to conclude that this evidence does not refute the condition that
the binomial parameter p = 0.10, and thus it may lead one not to reject the
hypothesis. However, it also does not refute p = 0.12 or perhaps even p = 0.15.
As a result, the reader must be accustomed to understanding that rejection of a
hypothesis implies that the sample evidence refutes it. Put another way,
rejection means that there is a small probability of obtaining the sample
information observed when, in fact, the hypothesis is true. For example,
for our proportion-defective hypothesis, a sample of 100 revealing 20 defective items
is certainly evidence for rejection. Why? If, indeed, p = 0.10, the probability of
obtaining 20 or more defectives is approximately 0.002. With the resulting small
risk of a wrong conclusion, it would seem safe to reject the hypothesis that
p = 0.10. In other words, rejection of a hypothesis tends to all but “rule out” the
hypothesis. On the other hand, it is very important to emphasize that acceptance
or, rather, failure to reject does not rule out other possibilities. As a result, the
firm conclusion is established by the data analyst when a hypothesis is rejected.

The formal statement of a hypothesis is often influenced by the structure of the
probability of a wrong conclusion. If the scientist is interested in strongly supporting
a contention, he or she hopes to arrive at the contention in the form of rejection of a
hypothesis. If the medical researcher wishes to show strong evidence in favor of the
contention that coffee drinking increases the risk of cancer, the hypothesis tested
should be of the form “there is no increase in cancer risk produced by drinking
coffee.” As a result, the contention is reached via a rejection. Similarly, to support
the claim that one kind of gauge is more accurate than another, the engineer tests
the hypothesis that there is no difference in the accuracy of the two kinds of gauges.

The foregoing implies that when the data analyst formalizes experimental evi-
dence on the basis of hypothesis testing, the formal statement of the hypothesis
is very important.

The Null and Alternative Hypotheses

The structure of hypothesis testing will be formulated with the use of the term
null hypothesis, which refers to any hypothesis we wish to test and is denoted
by H0. The rejection of H0 leads to the acceptance of an alternative hypoth-
esis, denoted by H1. An understanding of the different roles played by the null
hypothesis (H0) and the alternative hypothesis (H1) is crucial to one’s understand-
ing of the rudiments of hypothesis testing. The alternative hypothesis H1 usually
represents the question to be answered or the theory to be tested, and thus its spec-
ification is crucial. The null hypothesis H0 nullifies or opposes H1 and is often the
logical complement to H1. As the reader gains more understanding of hypothesis
testing, he or she should note that the analyst arrives at one of the two following
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conclusions:

reject H0 in favor of H1 because of sufficient evidence in the data or

fail to reject H0 because of insufficient evidence in the data.

Note that the conclusions do not involve a formal and literal “accept H0.” The
statement of H0 often represents the “status quo” in opposition to the new idea,
conjecture, and so on, stated in H1, while failure to reject H0 represents the proper
conclusion. In our binomial example, the practical issue may be a concern that
the historical defective probability of 0.10 no longer is true. Indeed, the conjecture
may be that p exceeds 0.10. We may then state

H0: p = 0.10,

H1: p > 0.10.

Now 12 defective items out of 100 does not refute p = 0.10, so the conclusion is
“fail to reject H0.” However, if the data produce 20 out of 100 defective items,
then the conclusion is “reject H0” in favor of H1: p > 0.10.

Though the applications of hypothesis testing are quite abundant in scientific
and engineering work, perhaps the best illustration for a novice lies in the predica-
ment encountered in a jury trial. The null and alternative hypotheses are

H0: defendant is innocent,

H1: defendant is guilty.

The indictment comes because of suspicion of guilt. The hypothesis H0 (the status
quo) stands in opposition to H1 and is maintained unless H1 is supported by
evidence “beyond a reasonable doubt.” However, “failure to reject H0” in this case
does not imply innocence, but merely that the evidence was insufficient to convict.
So the jury does not necessarily accept H0 but fails to reject H0.

10.2 Testing a Statistical Hypothesis

To illustrate the concepts used in testing a statistical hypothesis about a popula-
tion, we present the following example. A certain type of cold vaccine is known to
be only 25% effective after a period of 2 years. To determine if a new and some-
what more expensive vaccine is superior in providing protection against the same
virus for a longer period of time, suppose that 20 people are chosen at random and
inoculated. (In an actual study of this type, the participants receiving the new
vaccine might number several thousand. The number 20 is being used here only
to demonstrate the basic steps in carrying out a statistical test.) If more than 8 of
those receiving the new vaccine surpass the 2-year period without contracting the
virus, the new vaccine will be considered superior to the one presently in use. The
requirement that the number exceed 8 is somewhat arbitrary but appears reason-
able in that it represents a modest gain over the 5 people who could be expected to
receive protection if the 20 people had been inoculated with the vaccine already in
use. We are essentially testing the null hypothesis that the new vaccine is equally
effective after a period of 2 years as the one now commonly used. The alternative
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hypothesis is that the new vaccine is in fact superior. This is equivalent to testing
the hypothesis that the binomial parameter for the probability of a success on a
given trial is p = 1/4 against the alternative that p > 1/4. This is usually written
as follows:

H0: p = 0.25,

H1: p > 0.25.

The Test Statistic

The test statistic on which we base our decision is X, the number of individuals
in our test group who receive protection from the new vaccine for a period of at
least 2 years. The possible values of X, from 0 to 20, are divided into two groups:
those numbers less than or equal to 8 and those greater than 8. All possible scores
greater than 8 constitute the critical region. The last number that we observe
in passing into the critical region is called the critical value. In our illustration,
the critical value is the number 8. Therefore, if x > 8, we reject H0 in favor of the
alternative hypothesis H1. If x ≤ 8, we fail to reject H0. This decision criterion is
illustrated in Figure 10.1.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
x

Do not reject H0
(p � 0.25)

Reject H0
(p 	 0.25)

Figure 10.1: Decision criterion for testing p = 0.25 versus p > 0.25.

The Probability of a Type I Error

The decision procedure just described could lead to either of two wrong conclusions.
For instance, the new vaccine may be no better than the one now in use (H0 true)
and yet, in this particular randomly selected group of individuals, more than 8
surpass the 2-year period without contracting the virus. We would be committing
an error by rejecting H0 in favor of H1 when, in fact, H0 is true. Such an error is
called a type I error.

Definition 10.2: Rejection of the null hypothesis when it is true is called a type I error.

A second kind of error is committed if 8 or fewer of the group surpass the 2-year
period successfully and we are unable to conclude that the vaccine is better when
it actually is better (H1 true). Thus, in this case, we fail to reject H0 when in fact
H0 is false. This is called a type II error.

Definition 10.3: Nonrejection of the null hypothesis when it is false is called a type II error.

In testing any statistical hypothesis, there are four possible situations that
determine whether our decision is correct or in error. These four situations are
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summarized in Table 10.1.

Table 10.1: Possible Situations for Testing a Statistical Hypothesis

H0 is true H0 is false
Do not reject H0 Correct decision Type II error

Reject H0 Type I error Correct decision

The probability of committing a type I error, also called the level of signif-
icance, is denoted by the Greek letter α. In our illustration, a type I error will
occur when more than 8 individuals inoculated with the new vaccine surpass the
2-year period without contracting the virus and researchers conclude that the new
vaccine is better when it is actually equivalent to the one in use. Hence, if X is
the number of individuals who remain free of the virus for at least 2 years,

α = P (type I error) = P

(
X > 8 when p =

1

4

)
=

20∑
x=9

b

(
x; 20,

1

4

)

= 1−
8∑

x=0

b

(
x; 20,

1

4

)
= 1− 0.9591 = 0.0409.

We say that the null hypothesis, p = 1/4, is being tested at the α = 0.0409 level of
significance. Sometimes the level of significance is called the size of the test. A
critical region of size 0.0409 is very small, and therefore it is unlikely that a type
I error will be committed. Consequently, it would be most unusual for more than
8 individuals to remain immune to a virus for a 2-year period using a new vaccine
that is essentially equivalent to the one now on the market.

The Probability of a Type II Error

The probability of committing a type II error, denoted by β, is impossible to com-
pute unless we have a specific alternative hypothesis. If we test the null hypothesis
that p = 1/4 against the alternative hypothesis that p = 1/2, then we are able
to compute the probability of not rejecting H0 when it is false. We simply find
the probability of obtaining 8 or fewer in the group that surpass the 2-year period
when p = 1/2. In this case,

β = P (type II error) = P

(
X ≤ 8 when p =

1

2

)
=

8∑
x=0

b

(
x; 20,

1

2

)
= 0.2517.

This is a rather high probability, indicating a test procedure in which it is quite
likely that we shall reject the new vaccine when, in fact, it is superior to what is
now in use. Ideally, we like to use a test procedure for which the type I and type
II error probabilities are both small.

It is possible that the director of the testing program is willing to make a type
II error if the more expensive vaccine is not significantly superior. In fact, the only
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time he wishes to guard against the type II error is when the true value of p is at
least 0.7. If p = 0.7, this test procedure gives

β = P (type II error) = P (X ≤ 8 when p = 0.7)

=

8∑
x=0

b(x; 20, 0.7) = 0.0051.

With such a small probability of committing a type II error, it is extremely unlikely
that the new vaccine would be rejected when it was 70% effective after a period of
2 years. As the alternative hypothesis approaches unity, the value of β diminishes
to zero.

The Role of α, β, and Sample Size

Let us assume that the director of the testing program is unwilling to commit a
type II error when the alternative hypothesis p = 1/2 is true, even though we have
found the probability of such an error to be β = 0.2517. It is always possible to
reduce β by increasing the size of the critical region. For example, consider what
happens to the values of α and β when we change our critical value to 7 so that
all scores greater than 7 fall in the critical region and those less than or equal to
7 fall in the nonrejection region. Now, in testing p = 1/4 against the alternative
hypothesis that p = 1/2, we find that

α =
20∑
x=8

b

(
x; 20,

1

4

)
= 1−

7∑
x=0

b

(
x; 20,

1

4

)
= 1− 0.8982 = 0.1018

and

β =
7∑

x=0

b

(
x; 20,

1

2

)
= 0.1316.

By adopting a new decision procedure, we have reduced the probability of com-
mitting a type II error at the expense of increasing the probability of committing
a type I error. For a fixed sample size, a decrease in the probability of one error
will usually result in an increase in the probability of the other error. Fortunately,
the probability of committing both types of error can be reduced by
increasing the sample size. Consider the same problem using a random sample
of 100 individuals. If more than 36 of the group surpass the 2-year period, we
reject the null hypothesis that p = 1/4 and accept the alternative hypothesis that
p > 1/4. The critical value is now 36. All possible scores above 36 constitute the
critical region, and all possible scores less than or equal to 36 fall in the acceptance
region.

To determine the probability of committing a type I error, we shall use the
normal curve approximation with

μ = np = (100)

(
1

4

)
= 25 and σ =

√
npq =

√
(100)(1/4)(3/4) = 4.33.

Referring to Figure 10.2, we need the area under the normal curve to the right of
x = 36.5. The corresponding z-value is

z =
36.5− 25

4.33
= 2.66.
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� 4.33
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σ

Figure 10.2: Probability of a type I error.

From Table A.3 we find that

α = P (type I error) = P

(
X > 36 when p =

1

4

)
≈ P (Z > 2.66)

= 1− P (Z < 2.66) = 1− 0.9961 = 0.0039.

If H0 is false and the true value of H1 is p = 1/2, we can determine the
probability of a type II error using the normal curve approximation with

μ = np = (100)(1/2) = 50 and σ =
√
npq =

√
(100)(1/2)(1/2) = 5.

The probability of a value falling in the nonrejection region when H0 is true is
given by the area of the shaded region to the left of x = 36.5 in Figure 10.3. The
z-value corresponding to x = 36.5 is

z =
36.5− 50

5
= −2.7.

x
25 36.5 50

� 4.33 � 5

H0

H1

σ σ

Figure 10.3: Probability of a type II error.

Therefore,

β = P (type II error) = P

(
X ≤ 36 when p =

1

2

)
≈ P (Z < −2.7) = 0.0035.
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Obviously, the type I and type II errors will rarely occur if the experiment consists
of 100 individuals.

The illustration above underscores the strategy of the scientist in hypothesis
testing. After the null and alternative hypotheses are stated, it is important to
consider the sensitivity of the test procedure. By this we mean that there should
be a determination, for a fixed α, of a reasonable value for the probability of
wrongly accepting H0 (i.e., the value of β) when the true situation represents some
important deviation from H0. A value for the sample size can usually be determined
for which there is a reasonable balance between the values of α and β computed
in this fashion. The vaccine problem provides an illustration.

Illustration with a Continuous Random Variable

The concepts discussed here for a discrete population can be applied equally well
to continuous random variables. Consider the null hypothesis that the average
weight of male students in a certain college is 68 kilograms against the alternative
hypothesis that it is unequal to 68. That is, we wish to test

H0: μ = 68,

H1: μ �= 68.

The alternative hypothesis allows for the possibility that μ < 68 or μ > 68.
A sample mean that falls close to the hypothesized value of 68 would be consid-

ered evidence in favor ofH0. On the other hand, a sample mean that is considerably
less than or more than 68 would be evidence inconsistent with H0 and therefore
favoring H1. The sample mean is the test statistic in this case. A critical region
for the test statistic might arbitrarily be chosen to be the two intervals x̄ < 67
and x̄ > 69. The nonrejection region will then be the interval 67 ≤ x̄ ≤ 69. This
decision criterion is illustrated in Figure 10.4.

67 68 69
x

Reject H0
(  � 68)

Reject H0
(   � 68)

Do not reject H0
(   � 68)μ μμ 
 


Figure 10.4: Critical region (in blue).

Let us now use the decision criterion of Figure 10.4 to calculate the probabilities
of committing type I and type II errors when testing the null hypothesis that μ = 68
kilograms against the alternative that μ �= 68 kilograms.

Assume the standard deviation of the population of weights to be σ = 3.6. For
large samples, we may substitute s for σ if no other estimate of σ is available.
Our decision statistic, based on a random sample of size n = 36, will be X̄, the
most efficient estimator of μ. From the Central Limit Theorem, we know that
the sampling distribution of X̄ is approximately normal with standard deviation
σX̄ = σ/

√
n = 3.6/6 = 0.6.
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The probability of committing a type I error, or the level of significance of our
test, is equal to the sum of the areas that have been shaded in each tail of the
distribution in Figure 10.5. Therefore,

α = P (X̄ < 67 when μ = 68) + P (X̄ > 69 when μ = 68).

x
67  � 68 69

/2
μ

α /2α

Figure 10.5: Critical region for testing μ = 68 versus μ �= 68.

The z-values corresponding to x̄1 = 67 and x̄2 = 69 when H0 is true are

z1 =
67− 68

0.6
= −1.67 and z2 =

69− 68

0.6
= 1.67.

Therefore,

α = P (Z < −1.67) + P (Z > 1.67) = 2P (Z < −1.67) = 0.0950.

Thus, 9.5% of all samples of size 36 would lead us to reject μ = 68 kilograms when,
in fact, it is true. To reduce α, we have a choice of increasing the sample size
or widening the fail-to-reject region. Suppose that we increase the sample size to
n = 64. Then σX̄ = 3.6/8 = 0.45. Now

z1 =
67− 68

0.45
= −2.22 and z2 =

69− 68

0.45
= 2.22.

Hence,

α = P (Z < −2.22) + P (Z > 2.22) = 2P (Z < −2.22) = 0.0264.

The reduction in α is not sufficient by itself to guarantee a good testing proce-
dure. We must also evaluate β for various alternative hypotheses. If it is important
to reject H0 when the true mean is some value μ ≥ 70 or μ ≤ 66, then the prob-
ability of committing a type II error should be computed and examined for the
alternatives μ = 66 and μ = 70. Because of symmetry, it is only necessary to
consider the probability of not rejecting the null hypothesis that μ = 68 when the
alternative μ = 70 is true. A type II error will result when the sample mean x̄ falls
between 67 and 69 when H1 is true. Therefore, referring to Figure 10.6, we find
that

β = P (67 ≤ X̄ ≤ 69 when μ = 70).
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67 68 69 70 71
x

H0 H1

Figure 10.6: Probability of type II error for testing μ = 68 versus μ = 70.

The z-values corresponding to x̄1 = 67 and x̄2 = 69 when H1 is true are

z1 =
67− 70

0.45
= −6.67 and z2 =

69− 70

0.45
= −2.22.

Therefore,

β = P (−6.67 < Z < −2.22) = P (Z < −2.22)− P (Z < −6.67)

= 0.0132− 0.0000 = 0.0132.

If the true value of μ is the alternative μ = 66, the value of β will again be
0.0132. For all possible values of μ < 66 or μ > 70, the value of β will be even
smaller when n = 64, and consequently there would be little chance of not rejecting
H0 when it is false.

The probability of committing a type II error increases rapidly when the true
value of μ approaches, but is not equal to, the hypothesized value. Of course, this
is usually the situation where we do not mind making a type II error. For example,
if the alternative hypothesis μ = 68.5 is true, we do not mind committing a type
II error by concluding that the true answer is μ = 68. The probability of making
such an error will be high when n = 64. Referring to Figure 10.7, we have

β = P (67 ≤ X̄ ≤ 69 when μ = 68.5).

The z-values corresponding to x̄1 = 67 and x̄2 = 69 when μ = 68.5 are

z1 =
67− 68.5

0.45
= −3.33 and z2 =

69− 68.5

0.45
= 1.11.

Therefore,

β = P (−3.33 < Z < 1.11) = P (Z < 1.11)− P (Z < −3.33)

= 0.8665− 0.0004 = 0.8661.

The preceding examples illustrate the following important properties:
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67 68 6968.5
x

H0 H1

Figure 10.7: Type II error for testing μ = 68 versus μ = 68.5.

Important
Properties of a

Test of
Hypothesis

1. The type I error and type II error are related. A decrease in the probability
of one generally results in an increase in the probability of the other.

2. The size of the critical region, and therefore the probability of committing
a type I error, can always be reduced by adjusting the critical value(s).

3. An increase in the sample size n will reduce α and β simultaneously.

4. If the null hypothesis is false, β is a maximum when the true value of a
parameter approaches the hypothesized value. The greater the distance
between the true value and the hypothesized value, the smaller β will be.

One very important concept that relates to error probabilities is the notion of
the power of a test.

Definition 10.4: The power of a test is the probability of rejecting H0 given that a specific alter-
native is true.

The power of a test can be computed as 1 − β. Often different types of
tests are compared by contrasting power properties. Consider the previous
illustration, in which we were testing H0 : μ = 68 and H1 : μ �= 68. As before,
suppose we are interested in assessing the sensitivity of the test. The test is gov-
erned by the rule that we do not reject H0 if 67 ≤ x̄ ≤ 69. We seek the capability
of the test to properly reject H0 when indeed μ = 68.5. We have seen that the
probability of a type II error is given by β = 0.8661. Thus, the power of the test
is 1 − 0.8661 = 0.1339. In a sense, the power is a more succinct measure of how
sensitive the test is for detecting differences between a mean of 68 and a mean
of 68.5. In this case, if μ is truly 68.5, the test as described will properly reject
H0 only 13.39% of the time. As a result, the test would not be a good one if it
was important that the analyst have a reasonable chance of truly distinguishing
between a mean of 68.0 (specified by H0) and a mean of 68.5. From the foregoing,
it is clear that to produce a desirable power (say, greater than 0.8), one must either
increase α or increase the sample size.

So far in this chapter, much of the discussion of hypothesis testing has focused
on foundations and definitions. In the sections that follow, we get more specific
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and put hypotheses in categories as well as discuss tests of hypotheses on various
parameters of interest. We begin by drawing the distinction between a one-sided
and a two-sided hypothesis.

One- and Two-Tailed Tests

A test of any statistical hypothesis where the alternative is one sided, such as

H0: θ = θ0,

H1: θ > θ0

or perhaps

H0: θ = θ0,

H1: θ < θ0,

is called a one-tailed test. Earlier in this section, we referred to the test statistic
for a hypothesis. Generally, the critical region for the alternative hypothesis θ > θ0
lies in the right tail of the distribution of the test statistic, while the critical region
for the alternative hypothesis θ < θ0 lies entirely in the left tail. (In a sense,
the inequality symbol points in the direction of the critical region.) A one-tailed
test was used in the vaccine experiment to test the hypothesis p = 1/4 against
the one-sided alternative p > 1/4 for the binomial distribution. The one-tailed
critical region is usually obvious; the reader should visualize the behavior of the
test statistic and notice the obvious signal that would produce evidence supporting
the alternative hypothesis.

A test of any statistical hypothesis where the alternative is two sided, such as

H0: θ = θ0,

H1: θ �= θ0,

is called a two-tailed test, since the critical region is split into two parts, often
having equal probabilities, in each tail of the distribution of the test statistic. The
alternative hypothesis θ �= θ0 states that either θ < θ0 or θ > θ0. A two-tailed
test was used to test the null hypothesis that μ = 68 kilograms against the two-
sided alternative μ �= 68 kilograms in the example of the continuous population of
student weights.

How Are the Null and Alternative Hypotheses Chosen?

The null hypothesis H0 will often be stated using the equality sign. With this
approach, it is clear how the probability of type I error is controlled. However,
there are situations in which “do not reject H0” implies that the parameter θ might
be any value defined by the natural complement to the alternative hypothesis. For
example, in the vaccine example, where the alternative hypothesis is H1: p > 1/4,
it is quite possible that nonrejection of H0 cannot rule out a value of p less than
1/4. Clearly though, in the case of one-tailed tests, the statement of the alternative
is the most important consideration.



10.3 The Use of P -Values for Decision Making in Testing Hypotheses 331

Whether one sets up a one-tailed or a two-tailed test will depend on the con-
clusion to be drawn if H0 is rejected. The location of the critical region can be
determined only after H1 has been stated. For example, in testing a new drug, one
sets up the hypothesis that it is no better than similar drugs now on the market and
tests this against the alternative hypothesis that the new drug is superior. Such
an alternative hypothesis will result in a one-tailed test with the critical region
in the right tail. However, if we wish to compare a new teaching technique with
the conventional classroom procedure, the alternative hypothesis should allow for
the new approach to be either inferior or superior to the conventional procedure.
Hence, the test is two-tailed with the critical region divided equally so as to fall in
the extreme left and right tails of the distribution of our statistic.

Example 10.1: A manufacturer of a certain brand of rice cereal claims that the average saturated
fat content does not exceed 1.5 grams per serving. State the null and alternative
hypotheses to be used in testing this claim and determine where the critical region
is located.

Solution : The manufacturer’s claim should be rejected only if μ is greater than 1.5 milligrams
and should not be rejected if μ is less than or equal to 1.5 milligrams. We test

H0: μ = 1.5,

H1: μ > 1.5.

Nonrejection of H0 does not rule out values less than 1.5 milligrams. Since we
have a one-tailed test, the greater than symbol indicates that the critical region
lies entirely in the right tail of the distribution of our test statistic X̄.

Example 10.2: A real estate agent claims that 60% of all private residences being built today are
3-bedroom homes. To test this claim, a large sample of new residences is inspected;
the proportion of these homes with 3 bedrooms is recorded and used as the test
statistic. State the null and alternative hypotheses to be used in this test and
determine the location of the critical region.

Solution : If the test statistic were substantially higher or lower than p = 0.6, we would reject
the agent’s claim. Hence, we should make the hypothesis

H0: p = 0.6,

H1: p �= 0.6.

The alternative hypothesis implies a two-tailed test with the critical region divided
equally in both tails of the distribution of P̂ , our test statistic.

10.3 The Use of P -Values for Decision Making in Testing
Hypotheses

In testing hypotheses in which the test statistic is discrete, the critical region may
be chosen arbitrarily and its size determined. If α is too large, it can be reduced
by making an adjustment in the critical value. It may be necessary to increase the
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sample size to offset the decrease that occurs automatically in the power of the
test.

Over a number of generations of statistical analysis, it had become customary
to choose an α of 0.05 or 0.01 and select the critical region accordingly. Then, of
course, strict rejection or nonrejection of H0 would depend on that critical region.
For example, if the test is two tailed and α is set at the 0.05 level of significance
and the test statistic involves, say, the standard normal distribution, then a z-value
is observed from the data and the critical region is

z > 1.96 or z < −1.96,

where the value 1.96 is found as z0.025 in Table A.3. A value of z in the critical
region prompts the statement “The value of the test statistic is significant,” which
we can then translate into the user’s language. For example, if the hypothesis is
given by

H0: μ = 10,

H1: μ �= 10,

one might say, “The mean differs significantly from the value 10.”

Preselection of a Significance Level

This preselection of a significance level α has its roots in the philosophy that
the maximum risk of making a type I error should be controlled. However, this
approach does not account for values of test statistics that are “close” to the
critical region. Suppose, for example, in the illustration with H0 : μ = 10 versus
H1: μ �= 10, a value of z = 1.87 is observed; strictly speaking, with α = 0.05, the
value is not significant. But the risk of committing a type I error if one rejects H0

in this case could hardly be considered severe. In fact, in a two-tailed scenario, one
can quantify this risk as

P = 2P (Z > 1.87 when μ = 10) = 2(0.0307) = 0.0614.

As a result, 0.0614 is the probability of obtaining a value of z as large as or larger
(in magnitude) than 1.87 when in fact μ = 10. Although this evidence against H0

is not as strong as that which would result from rejection at an α = 0.05 level, it
is important information to the user. Indeed, continued use of α = 0.05 or 0.01 is
only a result of what standards have been passed down through the generations.
The P-value approach has been adopted extensively by users of applied
statistics. The approach is designed to give the user an alternative (in terms
of a probability) to a mere “reject” or “do not reject” conclusion. The P -value
computation also gives the user important information when the z-value falls well
into the ordinary critical region. For example, if z is 2.73, it is informative for the
user to observe that

P = 2(0.0032) = 0.0064,

and thus the z-value is significant at a level considerably less than 0.05. It is
important to know that under the condition of H0, a value of z = 2.73 is an
extremely rare event. That is, a value at least that large in magnitude would only
occur 64 times in 10,000 experiments.
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A Graphical Demonstration of a P-Value

One very simple way of explaining a P -value graphically is to consider two distinct
samples. Suppose that two materials are being considered for coating a particular
type of metal in order to inhibit corrosion. Specimens are obtained, and one
collection is coated with material 1 and one collection coated with material 2. The
sample sizes are n1 = n2 = 10, and corrosion is measured in percent of surface
area affected. The hypothesis is that the samples came from common distributions
with mean μ = 10. Let us assume that the population variance is 1.0. Then we
are testing

H0: μ1 = μ2 = 10.

Let Figure 10.8 represent a point plot of the data; the data are placed on the
distribution stated by the null hypothesis. Let us assume that the “×” data refer to
material 1 and the “◦” data refer to material 2. Now it seems clear that the data do
refute the null hypothesis. But how can this be summarized in one number? The
P-value can be viewed as simply the probability of obtaining these data
given that both samples come from the same distribution. Clearly, this
probability is quite small, say 0.00000001! Thus, the small P -value clearly refutes
H0, and the conclusion is that the population means are significantly different.

 � 10μ

Figure 10.8: Data that are likely generated from populations having two different
means.

Use of the P -value approach as an aid in decision-making is quite natural, and
nearly all computer packages that provide hypothesis-testing computation print
out P -values along with values of the appropriate test statistic. The following is a
formal definition of a P -value.

Definition 10.5: A P -value is the lowest level (of significance) at which the observed value of the
test statistic is significant.

How Does the Use of P-Values Differ from Classic Hypothesis Testing?

It is tempting at this point to summarize the procedures associated with testing,
say, H0 : θ = θ0. However, the student who is a novice in this area should un-
derstand that there are differences in approach and philosophy between the classic
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fixed α approach that is climaxed with either a “reject H0” or a “do not reject H0”
conclusion and the P -value approach. In the latter, no fixed α is determined and
conclusions are drawn on the basis of the size of the P -value in harmony with the
subjective judgment of the engineer or scientist. While modern computer software
will output P -values, nevertheless it is important that readers understand both
approaches in order to appreciate the totality of the concepts. Thus, we offer a
brief list of procedural steps for both the classical and the P -value approach.

Approach to
Hypothesis

Testing with
Fixed Probability
of Type I Error

1. State the null and alternative hypotheses.
2. Choose a fixed significance level α.
3. Choose an appropriate test statistic and establish the critical region based
on α.
4. Reject H0 if the computed test statistic is in the critical region. Otherwise,
do not reject.
5. Draw scientific or engineering conclusions.

Significance
Testing (P -Value

Approach)

1. State null and alternative hypotheses.
2. Choose an appropriate test statistic.
3. Compute the P -value based on the computed value of the test statistic.
4. Use judgment based on the P -value and knowledge of the scientific system.

In later sections of this chapter and chapters that follow, many examples and
exercises emphasize the P -value approach to drawing scientific conclusions.

Exercises

10.1 Suppose that an allergist wishes to test the hy-
pothesis that at least 30% of the public is allergic to
some cheese products. Explain how the allergist could
commit

(a) a type I error;

(b) a type II error.

10.2 A sociologist is concerned about the effective-
ness of a training course designed to get more drivers
to use seat belts in automobiles.

(a) What hypothesis is she testing if she commits a
type I error by erroneously concluding that the
training course is ineffective?

(b) What hypothesis is she testing if she commits a
type II error by erroneously concluding that the
training course is effective?

10.3 A large manufacturing firm is being charged
with discrimination in its hiring practices.

(a) What hypothesis is being tested if a jury commits
a type I error by finding the firm guilty?

(b) What hypothesis is being tested if a jury commits
a type II error by finding the firm guilty?

10.4 A fabric manufacturer believes that the propor-
tion of orders for raw material arriving late is p = 0.6.
If a random sample of 10 orders shows that 3 or fewer
arrived late, the hypothesis that p = 0.6 should be
rejected in favor of the alternative p < 0.6. Use the
binomial distribution.

(a) Find the probability of committing a type I error
if the true proportion is p = 0.6.

(b) Find the probability of committing a type II error
for the alternatives p = 0.3, p = 0.4, and p = 0.5.

10.5 Repeat Exercise 10.4 but assume that 50 orders
are selected and the critical region is defined to be
x ≤ 24, where x is the number of orders in the sample
that arrived late. Use the normal approximation.

10.6 The proportion of adults living in a small town
who are college graduates is estimated to be p = 0.6.
To test this hypothesis, a random sample of 15 adults
is selected. If the number of college graduates in the
sample is anywhere from 6 to 12, we shall not reject
the null hypothesis that p = 0.6; otherwise, we shall
conclude that p �= 0.6.

(a) Evaluate α assuming that p = 0.6. Use the bino-
mial distribution.
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(b) Evaluate β for the alternatives p = 0.5 and p = 0.7.

(c) Is this a good test procedure?

10.7 Repeat Exercise 10.6 but assume that 200 adults
are selected and the fail-to-reject region is defined to
be 110 ≤ x ≤ 130, where x is the number of college
graduates in our sample. Use the normal approxima-
tion.

10.8 In Relief from Arthritis published by Thorsons
Publishers, Ltd., John E. Croft claims that over 40%
of those who suffer from osteoarthritis receive measur-
able relief from an ingredient produced by a particular
species of mussel found off the coast of New Zealand.
To test this claim, the mussel extract is to be given to
a group of 7 osteoarthritic patients. If 3 or more of
the patients receive relief, we shall not reject the null
hypothesis that p = 0.4; otherwise, we conclude that
p < 0.4.

(a) Evaluate α, assuming that p = 0.4.

(b) Evaluate β for the alternative p = 0.3.

10.9 A dry cleaning establishment claims that a new
spot remover will remove more than 70% of the spots
to which it is applied. To check this claim, the spot
remover will be used on 12 spots chosen at random. If
fewer than 11 of the spots are removed, we shall not
reject the null hypothesis that p = 0.7; otherwise, we
conclude that p > 0.7.

(a) Evaluate α, assuming that p = 0.7.

(b) Evaluate β for the alternative p = 0.9.

10.10 Repeat Exercise 10.9 but assume that 100
spots are treated and the critical region is defined to
be x > 82, where x is the number of spots removed.

10.11 Repeat Exercise 10.8 but assume that 70 pa-
tients are given the mussel extract and the critical re-
gion is defined to be x < 24, where x is the number of
osteoarthritic patients who receive relief.

10.12 A random sample of 400 voters in a certain city
are asked if they favor an additional 4% gasoline sales
tax to provide badly needed revenues for street repairs.
If more than 220 but fewer than 260 favor the sales tax,
we shall conclude that 60% of the voters are for it.

(a) Find the probability of committing a type I error
if 60% of the voters favor the increased tax.

(b) What is the probability of committing a type II er-
ror using this test procedure if actually only 48%
of the voters are in favor of the additional gasoline
tax?

10.13 Suppose, in Exercise 10.12, we conclude that
60% of the voters favor the gasoline sales tax if more
than 214 but fewer than 266 voters in our sample fa-
vor it. Show that this new critical region results in a
smaller value for α at the expense of increasing β.

10.14 A manufacturer has developed a new fishing
line, which the company claims has a mean breaking
strength of 15 kilograms with a standard deviation of
0.5 kilogram. To test the hypothesis that μ = 15 kilo-
grams against the alternative that μ < 15 kilograms, a
random sample of 50 lines will be tested. The critical
region is defined to be x̄ < 14.9.

(a) Find the probability of committing a type I error
when H0 is true.

(b) Evaluate β for the alternatives μ = 14.8 and μ =
14.9 kilograms.

10.15 A soft-drink machine at a steak house is reg-
ulated so that the amount of drink dispensed is ap-
proximately normally distributed with a mean of 200
milliliters and a standard deviation of 15 milliliters.
The machine is checked periodically by taking a sam-
ple of 9 drinks and computing the average content. If
x̄ falls in the interval 191 < x̄ < 209, the machine is
thought to be operating satisfactorily; otherwise, we
conclude that μ �= 200 milliliters.

(a) Find the probability of committing a type I error
when μ = 200 milliliters.

(b) Find the probability of committing a type II error
when μ = 215 milliliters.

10.16 Repeat Exercise 10.15 for samples of size n =
25. Use the same critical region.

10.17 A new curing process developed for a certain
type of cement results in a mean compressive strength
of 5000 kilograms per square centimeter with a stan-
dard deviation of 120 kilograms. To test the hypothesis
that μ = 5000 against the alternative that μ < 5000,
a random sample of 50 pieces of cement is tested. The
critical region is defined to be x̄ < 4970.

(a) Find the probability of committing a type I error
when H0 is true.

(b) Evaluate β for the alternatives μ = 4970 and
μ = 4960.

10.18 If we plot the probabilities of failing to reject
H0 corresponding to various alternatives for μ (includ-
ing the value specified by H0) and connect all the
points by a smooth curve, we obtain the operating
characteristic curve of the test criterion, or simply
the OC curve. Note that the probability of failing to
reject H0 when it is true is simply 1 − α. Operating
characteristic curves are widely used in industrial ap-
plications to provide a visual display of the merits of
the test criterion. With reference to Exercise 10.15,
find the probabilities of failing to reject H0 for the fol-
lowing 9 values of μ and plot the OC curve: 184, 188,
192, 196, 200, 204, 208, 212, and 216.
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