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10.4 Single Sample: Tests Concerning a Single Mean

In this section, we formally consider tests of hypotheses on a single population
mean. Many of the illustrations from previous sections involved tests on the mean,
so the reader should already have insight into some of the details that are outlined
here.

Tests on a Single Mean (Variance Known)

We should first describe the assumptions on which the experiment is based. The
model for the underlying situation centers around an experiment with X1, X2, . . . ,
Xn representing a random sample from a distribution with mean μ and variance
σ2 > 0. Consider first the hypothesis

H0: μ = μ0,

H1: μ �= μ0.

The appropriate test statistic should be based on the random variable X̄. In
Chapter 8, the Central Limit Theorem was introduced, which essentially states
that despite the distribution of X, the random variable X̄ has approximately a
normal distribution with mean μ and variance σ2/n for reasonably large sample
sizes. So, μX̄ = μ and σ2

X̄
= σ2/n. We can then determine a critical region based

on the computed sample average, x̄. It should be clear to the reader by now that
there will be a two-tailed critical region for the test.

Standardization of X̄

It is convenient to standardize X̄ and formally involve the standard normal
random variable Z, where

Z =
X̄ − μ

σ/
√
n
.

We know that under H0, that is, if μ = μ0,
√
n(X̄ − μ0)/σ follows an n(x; 0, 1)

distribution, and hence the expression

P

(
−zα/2 <

X̄ − μ0

σ/
√
n

< zα/2

)
= 1− α

can be used to write an appropriate nonrejection region. The reader should keep
in mind that, formally, the critical region is designed to control α, the probability
of type I error. It should be obvious that a two-tailed signal of evidence is needed
to support H1. Thus, given a computed value x̄, the formal test involves rejecting
H0 if the computed test statistic z falls in the critical region described next.
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Test Procedure
for a Single Mean

(Variance
Known)

z =
x̄− μ0

σ/
√
n

> zα/2 or z =
x̄− μ0

σ/
√
n

< −zα/2

If −zα/2 < z < zα/2, do not reject H0. Rejection of H0, of course, implies
acceptance of the alternative hypothesis μ �= μ0. With this definition of the
critical region, it should be clear that there will be probability α of rejecting H0

(falling into the critical region) when, indeed, μ = μ0.

Although it is easier to understand the critical region written in terms of z,
we can write the same critical region in terms of the computed average x̄. The
following can be written as an identical decision procedure:

reject H0 if x̄ < a or x̄ > b,

where

a = μ0 − zα/2
σ√
n
, b = μ0 + zα/2

σ√
n
.

Hence, for a significance level α, the critical values of the random variable z and x̄
are both depicted in Figure 10.9.
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Figure 10.9: Critical region for the alternative hypothesis μ �= μ0.

Tests of one-sided hypotheses on the mean involve the same statistic described
in the two-sided case. The difference, of course, is that the critical region is only
in one tail of the standard normal distribution. For example, suppose that we seek
to test

H0: μ = μ0,

H1: μ > μ0.

The signal that favorsH1 comes from large values of z. Thus, rejection ofH0 results
when the computed z > zα. Obviously, if the alternative is H1: μ < μ0, the critical
region is entirely in the lower tail and thus rejection results from z < −zα. Although
in a one-sided testing case the null hypothesis can be written as H0 : μ ≤ μ0 or
H0: μ ≥ μ0, it is usually written as H0: μ = μ0.

The following two examples illustrate tests on means for the case in which σ is
known.
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Example 10.3: A random sample of 100 recorded deaths in the United States during the past
year showed an average life span of 71.8 years. Assuming a population standard
deviation of 8.9 years, does this seem to indicate that the mean life span today is
greater than 70 years? Use a 0.05 level of significance.

Solution : 1. H0: μ = 70 years.

2. H1: μ > 70 years.

3. α = 0.05.

4. Critical region: z > 1.645, where z = x̄−μ0

σ/
√
n
.

5. Computations: x̄ = 71.8 years, σ = 8.9 years, and hence z = 71.8−70
8.9/

√
100

= 2.02.

6. Decision: Reject H0 and conclude that the mean life span today is greater
than 70 years.

The P -value corresponding to z = 2.02 is given by the area of the shaded region
in Figure 10.10.

Using Table A.3, we have

P = P (Z > 2.02) = 0.0217.

As a result, the evidence in favor of H1 is even stronger than that suggested by a
0.05 level of significance.

Example 10.4: A manufacturer of sports equipment has developed a new synthetic fishing line that
the company claims has a mean breaking strength of 8 kilograms with a standard
deviation of 0.5 kilogram. Test the hypothesis that μ = 8 kilograms against the
alternative that μ �= 8 kilograms if a random sample of 50 lines is tested and found
to have a mean breaking strength of 7.8 kilograms. Use a 0.01 level of significance.

Solution : 1. H0: μ = 8 kilograms.

2. H1: μ �= 8 kilograms.

3. α = 0.01.

4. Critical region: z < −2.575 and z > 2.575, where z = x̄−μ0

σ/
√
n
.

5. Computations: x̄ = 7.8 kilograms, n = 50, and hence z = 7.8−8
0.5/

√
50

= −2.83.

6. Decision: Reject H0 and conclude that the average breaking strength is not
equal to 8 but is, in fact, less than 8 kilograms.

Since the test in this example is two tailed, the desired P -value is twice the
area of the shaded region in Figure 10.11 to the left of z = −2.83. Therefore, using
Table A.3, we have

P = P (|Z| > 2.83) = 2P (Z < −2.83) = 0.0046,

which allows us to reject the null hypothesis that μ = 8 kilograms at a level of
significance smaller than 0.01.
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Figure 10.10: P -value for Example 10.3.
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Figure 10.11: P -value for Example 10.4.

Relationship to Confidence Interval Estimation

The reader should realize by now that the hypothesis-testing approach to statistical
inference in this chapter is very closely related to the confidence interval approach in
Chapter 9. Confidence interval estimation involves computation of bounds within
which it is “reasonable” for the parameter in question to lie. For the case of a
single population mean μ with σ2 known, the structure of both hypothesis testing
and confidence interval estimation is based on the random variable

Z =
X̄ − μ

σ/
√
n
.

It turns out that the testing of H0: μ = μ0 against H1: μ �= μ0 at a significance level
α is equivalent to computing a 100(1− α)% confidence interval on μ and rejecting
H0 if μ0 is outside the confidence interval. If μ0 is inside the confidence interval,
the hypothesis is not rejected. The equivalence is very intuitive and quite simple to
illustrate. Recall that with an observed value x̄, failure to reject H0 at significance
level α implies that

−zα/2 ≤ x̄− μ0

σ/
√
n

≤ zα/2,

which is equivalent to

x̄− zα/2
σ√
n
≤ μ0 ≤ x̄+ zα/2

σ√
n
.

The equivalence of confidence interval estimation to hypothesis testing extends
to differences between two means, variances, ratios of variances, and so on. As a
result, the student of statistics should not consider confidence interval estimation
and hypothesis testing as separate forms of statistical inference. For example,
consider Example 9.2 on page 271. The 95% confidence interval on the mean is
given by the bounds (2.50, 2.70). Thus, with the same sample information, a two-
sided hypothesis on μ involving any hypothesized value between 2.50 and 2.70 will
not be rejected. As we turn to different areas of hypothesis testing, the equivalence
to the confidence interval estimation will continue to be exploited.
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Tests on a Single Sample (Variance Unknown)

One would certainly suspect that tests on a population mean μ with σ2 unknown,
like confidence interval estimation, should involve the use of Student t-distribution.
Strictly speaking, the application of Student t for both confidence intervals and
hypothesis testing is developed under the following assumptions. The random
variables X1, X2, . . . , Xn represent a random sample from a normal distribution
with unknown μ and σ2. Then the random variable

√
n(X̄ − μ)/S has a Student

t-distribution with n−1 degrees of freedom. The structure of the test is identical to
that for the case of σ known, with the exception that the value σ in the test statistic
is replaced by the computed estimate S and the standard normal distribution is
replaced by a t-distribution.

The t-Statistic
for a Test on a

Single Mean
(Variance
Unknown)

For the two-sided hypothesis

H0: μ = μ0,

H1: μ �= μ0,

we reject H0 at significance level α when the computed t-statistic

t =
x̄− μ0

s/
√
n

exceeds tα/2,n−1 or is less than −tα/2,n−1.

The reader should recall from Chapters 8 and 9 that the t-distribution is symmetric
around the value zero. Thus, this two-tailed critical region applies in a fashion
similar to that for the case of known σ. For the two-sided hypothesis at significance
level α, the two-tailed critical regions apply. For H1: μ > μ0, rejection results when
t > tα,n−1. For H1: μ < μ0, the critical region is given by t < −tα,n−1.

Example 10.5: The Edison Electric Institute has published figures on the number of kilowatt hours
used annually by various home appliances. It is claimed that a vacuum cleaner uses
an average of 46 kilowatt hours per year. If a random sample of 12 homes included
in a planned study indicates that vacuum cleaners use an average of 42 kilowatt
hours per year with a standard deviation of 11.9 kilowatt hours, does this suggest
at the 0.05 level of significance that vacuum cleaners use, on average, less than 46
kilowatt hours annually? Assume the population of kilowatt hours to be normal.

Solution : 1. H0: μ = 46 kilowatt hours.

2. H1: μ < 46 kilowatt hours.

3. α = 0.05.

4. Critical region: t < −1.796, where t = x̄−μ0

s/
√
n
with 11 degrees of freedom.

5. Computations: x̄ = 42 kilowatt hours, s = 11.9 kilowatt hours, and n = 12.
Hence,

t =
42− 46

11.9/
√
12

= −1.16, P = P (T < −1.16) ≈ 0.135.
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6. Decision: Do not reject H0 and conclude that the average number of kilowatt
hours used annually by home vacuum cleaners is not significantly less than
46.

Comment on the Single-Sample t-Test

The reader has probably noticed that the equivalence of the two-tailed t-test for
a single mean and the computation of a confidence interval on μ with σ replaced
by s is maintained. For example, consider Example 9.5 on page 275. Essentially,
we can view that computation as one in which we have found all values of μ0, the
hypothesized mean volume of containers of sulfuric acid, for which the hypothesis
H0: μ = μ0 will not be rejected at α = 0.05. Again, this is consistent with the
statement “Based on the sample information, values of the population mean volume
between 9.74 and 10.26 liters are not unreasonable.”

Comments regarding the normality assumption are worth emphasizing at this
point. We have indicated that when σ is known, the Central Limit Theorem
allows for the use of a test statistic or a confidence interval which is based on Z,
the standard normal random variable. Strictly speaking, of course, the Central
Limit Theorem, and thus the use of the standard normal distribution, does not
apply unless σ is known. In Chapter 8, the development of the t-distribution was
given. There we pointed out that normality on X1, X2, . . . , Xn was an underlying
assumption. Thus, strictly speaking, the Student’s t-tables of percentage points for
tests or confidence intervals should not be used unless it is known that the sample
comes from a normal population. In practice, σ can rarely be assumed to be known.
However, a very good estimate may be available from previous experiments. Many
statistics textbooks suggest that one can safely replace σ by s in the test statistic

z =
x̄− μ0

σ/
√
n

when n ≥ 30 with a bell-shaped population and still use the Z-tables for the
appropriate critical region. The implication here is that the Central Limit Theorem
is indeed being invoked and one is relying on the fact that s ≈ σ. Obviously, when
this is done, the results must be viewed as approximate. Thus, a computed P -
value (from the Z-distribution) of 0.15 may be 0.12 or perhaps 0.17, or a computed
confidence interval may be a 93% confidence interval rather than a 95% interval
as desired. Now what about situations where n ≤ 30? The user cannot rely on s
being close to σ, and in order to take into account the inaccuracy of the estimate,
the confidence interval should be wider or the critical value larger in magnitude.
The t-distribution percentage points accomplish this but are correct only when the
sample is from a normal distribution. Of course, normal probability plots can be
used to ascertain some sense of the deviation of normality in a data set.

For small samples, it is often difficult to detect deviations from a normal dis-
tribution. (Goodness-of-fit tests are discussed in a later section of this chapter.)
For bell-shaped distributions of the random variables X1, X2, . . . , Xn, the use of
the t-distribution for tests or confidence intervals is likely to produce quite good
results. When in doubt, the user should resort to nonparametric procedures, which
are presented in Chapter 16.
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Annotated Computer Printout for Single-Sample t-Test

It should be of interest for the reader to see an annotated computer printout
showing the result of a single-sample t-test. Suppose that an engineer is interested
in testing the bias in a pH meter. Data are collected on a neutral substance (pH
= 7.0). A sample of the measurements were taken with the data as follows:

7.07 7.00 7.10 6.97 7.00 7.03 7.01 7.01 6.98 7.08

It is, then, of interest to test

H0: μ = 7.0,

H1: μ �= 7.0.

In this illustration, we use the computer package MINITAB to illustrate the anal-
ysis of the data set above. Notice the key components of the printout shown in
Figure 10.12. Of course, the mean ȳ is 7.0250, StDev is simply the sample standard
deviation s = 0.044, and SE Mean is the estimated standard error of the mean and
is computed as s/

√
n = 0.0139. The t-value is the ratio

(7.0250− 7)/0.0139 = 1.80.

pH-meter

7.07 7.00 7.10 6.97 7.00 7.03 7.01 7.01 6.98 7.08

MTB > Onet ’pH-meter’; SUBC> Test 7.

One-Sample T: pH-meter Test of mu = 7 vs not = 7

Variable N Mean StDev SE Mean 95% CI T P

pH-meter 10 7.02500 0.04403 0.01392 (6.99350, 7.05650) 1.80 0.106

Figure 10.12: MINITAB printout for one sample t-test for pH meter.

The P -value of 0.106 suggests results that are inconclusive. There is no evi-
dence suggesting a strong rejection of H0 (based on an α of 0.05 or 0.10), yet one
certainly cannot truly conclude that the pH meter is unbiased. Notice
that the sample size of 10 is rather small. An increase in sample size (perhaps an-
other experiment) may sort things out. A discussion regarding appropriate sample
size appears in Section 10.6.

10.5 Two Samples: Tests on Two Means

The reader should now understand the relationship between tests and confidence
intervals, and can only heavily rely on details supplied by the confidence interval
material in Chapter 9. Tests concerning two means represent a set of very impor-
tant analytical tools for the scientist or engineer. The experimental setting is very
much like that described in Section 9.8. Two independent random samples of sizes
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n1 and n2, respectively, are drawn from two populations with means μ1 and μ2

and variances σ2
1 and σ2

2 . We know that the random variable

Z =
(X̄1 − X̄2)− (μ1 − μ2)√

σ2
1/n1 + σ2

2/n2

has a standard normal distribution. Here we are assuming that n1 and n2 are
sufficiently large that the Central Limit Theorem applies. Of course, if the two
populations are normal, the statistic above has a standard normal distribution
even for small n1 and n2. Obviously, if we can assume that σ1 = σ2 = σ, the
statistic above reduces to

Z =
(X̄1 − X̄2)− (μ1 − μ2)

σ
√
1/n1 + 1/n2

.

The two statistics above serve as a basis for the development of the test procedures
involving two means. The equivalence between tests and confidence intervals, along
with the technical detail involving tests on one mean, allow a simple transition to
tests on two means.

The two-sided hypothesis on two means can be written generally as

H0: μ1 − μ2 = d0.

Obviously, the alternative can be two sided or one sided. Again, the distribu-
tion used is the distribution of the test statistic under H0. Values x̄1 and x̄2 are
computed and, for σ1 and σ2 known, the test statistic is given by

z =
(x̄1 − x̄2)− d0√
σ2
1/n1 + σ2

2/n2

,

with a two-tailed critical region in the case of a two-sided alternative. That is,
reject H0 in favor of H1: μ1 −μ2 �= d0 if z > zα/2 or z < −zα/2. One-tailed critical
regions are used in the case of the one-sided alternatives. The reader should, as
before, study the test statistic and be satisfied that for, say, H1: μ1 − μ2 > d0, the
signal favoring H1 comes from large values of z. Thus, the upper-tailed critical
region applies.

Unknown But Equal Variances

The more prevalent situations involving tests on two means are those in which
variances are unknown. If the scientist involved is willing to assume that both
distributions are normal and that σ1 = σ2 = σ, the pooled t-test (often called the
two-sample t-test) may be used. The test statistic (see Section 9.8) is given by the
following test procedure.
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Two-Sample
Pooled t-Test

For the two-sided hypothesis

H0: μ1 = μ2,

H1: μ1 �= μ2,

we reject H0 at significance level α when the computed t-statistic

t =
(x̄1 − x̄2)− d0

sp
√

1/n1 + 1/n2

,

where

s2p =
s21(n1 − 1) + s22(n2 − 1)

n1 + n2 − 2

exceeds tα/2,n1+n2−2 or is less than −tα/2,n1+n2−2.

Recall from Chapter 9 that the degrees of freedom for the t-distribution are a
result of pooling of information from the two samples to estimate σ2. One-sided
alternatives suggest one-sided critical regions, as one might expect. For example,
for H1: μ1 − μ2 > d0, reject H1: μ1 − μ2 = d0 when t > tα,n1+n2−2.

Example 10.6: An experiment was performed to compare the abrasive wear of two different lami-
nated materials. Twelve pieces of material 1 were tested by exposing each piece to
a machine measuring wear. Ten pieces of material 2 were similarly tested. In each
case, the depth of wear was observed. The samples of material 1 gave an average
(coded) wear of 85 units with a sample standard deviation of 4, while the samples
of material 2 gave an average of 81 with a sample standard deviation of 5. Can
we conclude at the 0.05 level of significance that the abrasive wear of material 1
exceeds that of material 2 by more than 2 units? Assume the populations to be
approximately normal with equal variances.

Solution : Let μ1 and μ2 represent the population means of the abrasive wear for material 1
and material 2, respectively.

1. H0: μ1 − μ2 = 2.

2. H1: μ1 − μ2 > 2.

3. α = 0.05.

4. Critical region: t > 1.725, where t = (x̄1−x̄2)−d0

sp
√

1/n1+1/n2

with v = 20 degrees of

freedom.

5. Computations:

x̄1 = 85, s1 = 4, n1 = 12,

x̄2 = 81, s2 = 5, n2 = 10.
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Hence

sp =

√
(11)(16) + (9)(25)

12 + 10− 2
= 4.478,

t =
(85− 81)− 2

4.478
√
1/12 + 1/10

= 1.04,

P = P (T > 1.04) ≈ 0.16. (See Table A.4.)

6. Decision: Do not reject H0. We are unable to conclude that the abrasive wear
of material 1 exceeds that of material 2 by more than 2 units.

Unknown But Unequal Variances

There are situations where the analyst is not able to assume that σ1 = σ2. Recall
from Section 9.8 that, if the populations are normal, the statistic

T ′ =
(X̄1 − X̄2)− d0√
s21/n1 + s22/n2

has an approximate t-distribution with approximate degrees of freedom

v =
(s21/n1 + s22/n2)

2

(s21/n1)2/(n1 − 1) + (s22/n2)2/(n2 − 1)
.

As a result, the test procedure is to not reject H0 when

−tα/2,v < t′ < tα/2,v,

with v given as above. Again, as in the case of the pooled t-test, one-sided alter-
natives suggest one-sided critical regions.

Paired Observations

A study of the two-sample t-test or confidence interval on the difference between
means should suggest the need for experimental design. Recall the discussion of
experimental units in Chapter 9, where it was suggested that the conditions of
the two populations (often referred to as the two treatments) should be assigned
randomly to the experimental units. This is done to avoid biased results due to
systematic differences between experimental units. In other words, in hypothesis-
testing jargon, it is important that any significant difference found between means
be due to the different conditions of the populations and not due to the exper-
imental units in the study. For example, consider Exercise 9.40 in Section 9.9.
The 20 seedlings play the role of the experimental units. Ten of them are to be
treated with nitrogen and 10 with no nitrogen. It may be very important that
this assignment to the “nitrogen” and “no-nitrogen” treatments be random to en-
sure that systematic differences between the seedlings do not interfere with a valid
comparison between the means.

In Example 10.6, time of measurement is the most likely choice for the experi-
mental unit. The 22 pieces of material should be measured in random order. We
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need to guard against the possibility that wear measurements made close together
in time might tend to give similar results. Systematic (nonrandom) differences
in experimental units are not expected. However, random assignments guard
against the problem.

References to planning of experiments, randomization, choice of sample size,
and so on, will continue to influence much of the development in Chapters 13, 14,
and 15. Any scientist or engineer whose interest lies in analysis of real data should
study this material. The pooled t-test is extended in Chapter 13 to cover more
than two means.

Testing of two means can be accomplished when data are in the form of paired
observations, as discussed in Chapter 9. In this pairing structure, the conditions
of the two populations (treatments) are assigned randomly within homogeneous
units. Computation of the confidence interval for μ1 − μ2 in the situation with
paired observations is based on the random variable

T =
D̄ − μD

Sd/
√
n
,

where D̄ and Sd are random variables representing the sample mean and standard
deviation of the differences of the observations in the experimental units. As in the
case of the pooled t-test, the assumption is that the observations from each popu-
lation are normal. This two-sample problem is essentially reduced to a one-sample
problem by using the computed differences d1, d2, . . . , dn. Thus, the hypothesis
reduces to

H0: μD = d0.

The computed test statistic is then given by

t =
d− d0
sd/

√
n
.

Critical regions are constructed using the t-distribution with n− 1 degrees of free-
dom.

Problem of Interaction in a Paired t-Test

Not only will the case study that follows illustrate the use of the paired t-test but
the discussion will shed considerable light on the difficulties that arise when there
is an interaction between the treatments and the experimental units in the paired
t structure. Recall that interaction between factors was introduced in Section 1.7
in a discussion of general types of statistical studies. The concept of interaction
will be an important issue from Chapter 13 through Chapter 15.

There are some types of statistical tests in which the existence of interaction
results in difficulty. The paired t-test is one such example. In Section 9.9, the paired
structure was used in the computation of a confidence interval on the difference
between two means, and the advantage in pairing was revealed for situations in
which the experimental units are homogeneous. The pairing results in a reduction
in σD, the standard deviation of a difference Di = X1i − X2i, as discussed in
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Section 9.9. If interaction exists between treatments and experimental units, the
advantage gained in pairing may be substantially reduced. Thus, in Example 9.13
on page 293, the no interaction assumption allowed the difference in mean TCDD
levels (plasma vs. fat tissue) to be the same across veterans. A quick glance at the
data would suggest that there is no significant violation of the assumption of no
interaction.

In order to demonstrate how interaction influences Var(D) and hence the quality
of the paired t-test, it is instructive to revisit the ith difference given by Di = X1i−
X2i = (μ1 − μ2) + (ε1 − ε2), where X1i and X2i are taken on the ith experimental
unit. If the pairing unit is homogeneous, the errors in X1i and in X2i should be
similar and not independent. We noted in Chapter 9 that the positive covariance
between the errors results in a reduced Var(D). Thus, the size of the difference in
the treatments and the relationship between the errors in X1i and X2i contributed
by the experimental unit will tend to allow a significant difference to be detected.

What Conditions Result in Interaction?

Let us consider a situation in which the experimental units are not homogeneous.
Rather, consider the ith experimental unit with random variables X1i and X2i that
are not similar. Let ε1i and ε2i be random variables representing the errors in the
values X1i and X2i, respectively, at the ith unit. Thus, we may write

X1i = μ1 + ε1i and X2i = μ2 + ε2i.

The errors with expectation zero may tend to cause the response values X1i and
X2i to move in opposite directions, resulting in a negative value for Cov(ε1i, ε2i)
and hence negative Cov(X1i, X2i). In fact, the model may be complicated even
more by the fact that σ2

1 = Var(ε1i) �= σ2
2 = Var(ε2i). The variance and covari-

ance parameters may vary among the n experimental units. Thus, unlike in the
homogeneous case, Di will tend to be quite different across experimental units due
to the heterogeneous nature of the difference in ε1 − ε2 among the units. This
produces the interaction between treatments and units. In addition, for a specific
experimental unit (see Theorem 4.9),

σ2
D = Var(D) = Var(ε1) + Var(ε2)− 2 Cov(ε1, ε2)

is inflated by the negative covariance term, and thus the advantage gained in pairing
in the homogeneous unit case is lost in the case described here. While the inflation
in Var(D) will vary from case to case, there is a danger in some cases that the
increase in variance may neutralize any difference that exists between μ1 and μ2.
Of course, a large value of d̄ in the t-statistic may reflect a treatment difference
that overcomes the inflated variance estimate, s2d.

Case Study 10.1: Blood Sample Data: In a study conducted in the Forestry and Wildlife De-
partment at Virginia Tech, J. A. Wesson examined the influence of the drug suc-
cinylcholine on the circulation levels of androgens in the blood. Blood samples
were taken from wild, free-ranging deer immediately after they had received an
intramuscular injection of succinylcholine administered using darts and a capture
gun. A second blood sample was obtained from each deer 30 minutes after the
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first sample, after which the deer was released. The levels of androgens at time of
capture and 30 minutes later, measured in nanograms per milliliter (ng/mL), for
15 deer are given in Table 10.2.

Assuming that the populations of androgen levels at time of injection and 30
minutes later are normally distributed, test at the 0.05 level of significance whether
the androgen concentrations are altered after 30 minutes.

Table 10.2: Data for Case Study 10.1

Androgen (ng/mL)
Deer At Time of Injection 30 Minutes after Injection di

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15

2.76
5.18
2.68
3.05
4.10
7.05
6.60
4.79
7.39
7.30
11.78
3.90
26.00
67.48
17.04

7.02
3.10
5.44
3.99
5.21

10.26
13.91
18.53
7.91
4.85

11.10
3.74

94.03
94.03
41.70

4.26
−2.08
2.76
0.94
1.11
3.21
7.31
13.74
0.52

−2.45
−0.68
−0.16
68.03
26.55
24.66

Solution : Let μ1 and μ2 be the average androgen concentration at the time of injection and
30 minutes later, respectively. We proceed as follows:

1. H0: μ1 = μ2 or μD = μ1 − μ2 = 0.

2. H1: μ1 �= μ2 or μD = μ1 − μ2 �= 0.

3. α = 0.05.

4. Critical region: t < −2.145 and t > 2.145, where t = d−d0

sD/
√
n

with v = 14

degrees of freedom.

5. Computations: The sample mean and standard deviation for the di are

d = 9.848 and sd = 18.474.

Therefore,

t =
9.848− 0

18.474/
√
15

= 2.06.

6. Though the t-statistic is not significant at the 0.05 level, from Table A.4,

P = P (|T | > 2.06) ≈ 0.06.

As a result, there is some evidence that there is a difference in mean circulating
levels of androgen.
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The assumption of no interaction would imply that the effect on androgen
levels of the deer is roughly the same in the data for both treatments, i.e., at the
time of injection of succinylcholine and 30 minutes following injection. This can
be expressed with the two factors switching roles; for example, the difference in
treatments is roughly the same across the units (i.e., the deer). There certainly are
some deer/treatment combinations for which the no interaction assumption seems
to hold, but there is hardly any strong evidence that the experimental units are
homogeneous. However, the nature of the interaction and the resulting increase in
Var(D̄) appear to be dominated by a substantial difference in the treatments. This
is further demonstrated by the fact that 11 of the 15 deer exhibited positive signs
for the computed di and the negative di (for deer 2, 10, 11, and 12) are small in
magnitude compared to the 12 positive ones. Thus, it appears that the mean level
of androgen is significantly higher 30 minutes following injection than at injection,
and the conclusions may be stronger than p = 0.06 would suggest.

Annotated Computer Printout for Paired t-Test

Figure 10.13 displays a SAS computer printout for a paired t-test using the data
of Case Study 10.1. Notice that the printout looks like that for a single sample
t-test and, of course, that is exactly what is accomplished, since the test seeks to
determine if d is significantly different from zero.

Analysis Variable : Diff

N Mean Std Error t Value Pr > |t|

---------------------------------------------------------

15 9.8480000 4.7698699 2.06 0.0580

---------------------------------------------------------

Figure 10.13: SAS printout of paired t-test for data of Case Study 10.1.

Summary of Test Procedures

As we complete the formal development of tests on population means, we offer
Table 10.3, which summarizes the test procedure for the cases of a single mean and
two means. Notice the approximate procedure when distributions are normal and
variances are unknown but not assumed to be equal. This statistic was introduced
in Chapter 9.

10.6 Choice of Sample Size for Testing Means

In Section 10.2, we demonstrated how the analyst can exploit relationships among
the sample size, the significance level α, and the power of the test to achieve
a certain standard of quality. In most practical circumstances, the experiment
should be planned, with a choice of sample size made prior to the data-taking
process if possible. The sample size is usually determined to achieve good power
for a fixed α and fixed specific alternative. This fixed alternative may be in the
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Table 10.3: Tests Concerning Means

H0 Value of Test Statistic H1 Critical Region

μ = μ0 z =
x̄− μ0

σ/
√
n
; σ known

μ < μ0

μ > μ0

μ �= μ0

z < −zα
z > zα
z < −zα/2 or z > zα/2

μ = μ0
t =

x̄− μ0

s/
√
n
; v = n− 1,

σ unknown

μ < μ0

μ > μ0

μ �= μ0

t < −tα
t > tα
t < −tα/2 or t > tα/2

μ1 − μ2 = d0
z =

(x̄1 − x̄2)− d0√
σ2
1/n1 + σ2

2/n2

;

σ1 and σ2 known

μ1 − μ2 < d0
μ1 − μ2 > d0
μ1 − μ2 �= d0

z < −zα
z > zα
z < −zα/2 or z > zα/2

μ1 − μ2 = d0

t =
(x̄1 − x̄2)− d0

sp
√

1/n1 + 1/n2

;

v = n1 + n2 − 2,
σ1 = σ2 but unknown,

s2p =
(n1 − 1)s21 + (n2 − 1)s22

n1 + n2 − 2

μ1 − μ2 < d0
μ1 − μ2 > d0
μ1 − μ2 �= d0

t < −tα
t > tα
t < −tα/2 or t > tα/2

μ1 − μ2 = d0

t′ =
(x̄1 − x̄2)− d0√
s21/n1 + s22/n2

;

v =
(s21/n1 + s22/n2)

2

(s21/n1)2

n1−1 +
(s22/n2)2

n2−1

,

σ1 �= σ2 and unknown

μ1 − μ2 < d0
μ1 − μ2 > d0
μ1 − μ2 �= d0

t′ < −tα
t′ > tα
t′ < −tα/2 or t′ > tα/2

μD = d0
paired
observations

t =
d− d0
sd/

√
n
;

v = n− 1

μD < d0
μD > d0
μD �= d0

t < −tα
t > tα
t < −tα/2 or t > tα/2

form of μ−μ0 in the case of a hypothesis involving a single mean or μ1−μ2 in the
case of a problem involving two means. Specific cases will provide illustrations.

Suppose that we wish to test the hypothesis

H0 : μ = μ0,

H1 : μ > μ0,

with a significance level α, when the variance σ2 is known. For a specific alternative,
say μ = μ0 + δ, the power of our test is shown in Figure 10.14 to be

1− β = P (X̄ > a when μ = μ0 + δ).

Therefore,

β = P (X̄ < a when μ = μ0 + δ)

= P

[
X̄ − (μ0 + δ)

σ/
√
n

<
a− (μ0 + δ)

σ/
√
n

when μ = μ0 + δ

]
.
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x
a +μ0 μ0 δ

αβ

Figure 10.14: Testing μ = μ0 versus μ = μ0 + δ.

Under the alternative hypothesis μ = μ0 + δ, the statistic

X̄ − (μ0 + δ)

σ/
√
n

is the standard normal variable Z. So

β = P

(
Z <

a− μ0

σ/
√
n

− δ

σ/
√
n

)
= P

(
Z < zα − δ

σ/
√
n

)
,

from which we conclude that

−zβ = zα − δ
√
n

σ
,

and hence

Choice of sample size: n =
(zα + zβ)

2σ2

δ2
,

a result that is also true when the alternative hypothesis is μ < μ0.
In the case of a two-tailed test, we obtain the power 1 − β for a specified

alternative when

n ≈ (zα/2 + zβ)
2σ2

δ2
.

Example 10.7: Suppose that we wish to test the hypothesis

H0: μ = 68 kilograms,

H1: μ > 68 kilograms

for the weights of male students at a certain college, using an α = 0.05 level of
significance, when it is known that σ = 5. Find the sample size required if the
power of our test is to be 0.95 when the true mean is 69 kilograms.
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Solution : Since α = β = 0.05, we have zα = zβ = 1.645. For the alternative β = 69, we take
δ = 1 and then

n =
(1.645 + 1.645)2(25)

1
= 270.6.

Therefore, 271 observations are required if the test is to reject the null hypothesis
95% of the time when, in fact, μ is as large as 69 kilograms.

Two-Sample Case

A similar procedure can be used to determine the sample size n = n1 = n2 required
for a specific power of the test in which two population means are being compared.
For example, suppose that we wish to test the hypothesis

H0: μ1 − μ2 = d0,

H1: μ1 − μ2 �= d0,

when σ1 and σ2 are known. For a specific alternative, say μ1 − μ2 = d0 + δ, the
power of our test is shown in Figure 10.15 to be

1− β = P (|X̄1 − X̄2| > a when μ1 − μ2 = d0 + δ).

x
a +−a d0 d0 δ

α 2β
α 2

Figure 10.15: Testing μ1 − μ2 = d0 versus μ1 − μ2 = d0 + δ.

Therefore,

β = P (−a < X̄1 − X̄2 < a when μ1 − μ2 = d0 + δ)

= P

[
−a− (d0 + δ)√
(σ2

1 + σ2
2)/n

<
(X̄1 − X̄2)− (d0 + δ)√

(σ2
1 + σ2

2)/n

<
a− (d0 + δ)√
(σ2

1 + σ2
2)/n

when μ1 − μ2 = d0 + δ

]
.

Under the alternative hypothesis μ1 − μ2 = d0 + δ, the statistic

X̄1 − X̄2 − (d0 + δ)√
(σ2

1 + σ2
2)/n
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is the standard normal variable Z. Now, writing

−zα/2 =
−a− d0√
(σ2

1 + σ2
2)/n

and zα/2 =
a− d0√

(σ2
1 + σ2

2)/n
,

we have

β = P

[
−zα/2 − δ√

(σ2
1 + σ2

2)/n
< Z < zα/2 − δ√

(σ2
1 + σ2

2)/n

]
,

from which we conclude that

−zβ ≈ zα/2 − δ√
(σ2

1 + σ2
2)/n

,

and hence

n ≈ (zα/2 + zβ)
2(σ2

1 + σ2
2)

δ2
.

For the one-tailed test, the expression for the required sample size when n = n1 =
n2 is

Choice of sample size: n =
(zα + zβ)

2(σ2
1 + σ2

2)

δ2
.

When the population variance (or variances, in the two-sample situation) is un-
known, the choice of sample size is not straightforward. In testing the hypothesis
μ = μ0 when the true value is μ = μ0 + δ, the statistic

X̄ − (μ0 + δ)

S/
√
n

does not follow the t-distribution, as one might expect, but instead follows the
noncentral t-distribution. However, tables or charts based on the noncentral
t-distribution do exist for determining the appropriate sample size if some estimate
of σ is available or if δ is a multiple of σ. Table A.8 gives the sample sizes needed
to control the values of α and β for various values of

Δ =
|δ|
σ

=
|μ− μ0|

σ

for both one- and two-tailed tests. In the case of the two-sample t-test in which the
variances are unknown but assumed equal, we obtain the sample sizes n = n1 = n2

needed to control the values of α and β for various values of

Δ =
|δ|
σ

=
|μ1 − μ2 − d0|

σ

from Table A.9.

Example 10.8: In comparing the performance of two catalysts on the effect of a reaction yield, a
two-sample t-test is to be conducted with α = 0.05. The variances in the yields
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are considered to be the same for the two catalysts. How large a sample for each
catalyst is needed to test the hypothesis

H0: μ1 = μ2,

H1: μ1 �= μ2

if it is essential to detect a difference of 0.8σ between the catalysts with probability
0.9?

Solution : From Table A.9, with α = 0.05 for a two-tailed test, β = 0.1, and

Δ =
|0.8σ|
σ

= 0.8,

we find the required sample size to be n = 34.
In practical situations, it might be difficult to force a scientist or engineer

to make a commitment on information from which a value of Δ can be found.
The reader is reminded that the Δ-value quantifies the kind of difference between
the means that the scientist considers important, that is, a difference considered
significant from a scientific, not a statistical, point of view. Example 10.8 illustrates
how this choice is often made, namely, by selecting a fraction of σ. Obviously, if
the sample size is based on a choice of |δ| that is a small fraction of σ, the resulting
sample size may be quite large compared to what the study allows.
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