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Approximations and 
Round-Off Errors

Because so many of the methods in this book are straightforward in description and 

application, it would be very tempting at this point for us to proceed directly to the main 

body of the text and teach you how to use these techniques. However, understanding the 

concept of error is so important to the effective use of numerical methods that we have 

chosen to devote the next two chapters to this topic.

The importance of error was introduced in our discussion of the falling parachutist 

in Chap. 1. Recall that we determined the velocity of a falling parachutist by both ana-

lytical and numerical methods. Although the numerical technique yielded estimates that 

were close to the exact analytical solution, there was a discrepancy, or error, because the 

numerical method involved an approximation. Actually, we were fortunate in that case 

because the availability of an analytical solution allowed us to compute the error exactly. 

For many applied engineering problems, we cannot obtain analytical solutions. Therefore, 

we cannot compute exactly the errors associated with our numerical methods. In these 

cases, we must settle for approximations or estimates of the errors.

Such errors are characteristic of most of the techniques described in this book. This 

statement might at i rst seem contrary to what one normally conceives of as sound 

engineering. Students and practicing engineers constantly strive to limit errors in their 

work. When taking examinations or doing homework problems, you are penalized, not 

rewarded, for your errors. In professional practice, errors can be costly and sometimes 

catastrophic. If a structure or device fails, lives can be lost.

Although perfection is a laudable goal, it is rarely, if ever, attained. For example, despite 

the fact that the model developed from Newton’s second law is an excellent approximation, 

it would never in practice exactly predict the parachutist’s fall. A variety of factors such as 

winds and slight variations in air resistance would result in deviations from the prediction. If 

these deviations are systematically high or low, then we might need to develop a new model. 

However, if they are randomly distributed and tightly grouped around the prediction, then the 

deviations might be considered negligible and the model deemed adequate. Numerical 

approximations also introduce similar discrepancies into the analysis. Again, the question 

is: How much the next error is present in our calculations and is it tolerable?

This chapter and Chap. 4 cover basic topics related to the identii cation, quan-

tii cation, and minimization of these errors. In this chapter, general information con-

cerned with the quantii cation of error is reviewed in the i rst sections. This is 
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56 APPROXIMATIONS AND ROUND-OFF ERRORS

followed by a section on one of the two major forms of numerical error: round-off 

error. Round-off error is due to the fact that computers can represent only quantities 

with a i nite number of digits. Then Chap. 4 deals with the other major form: trun-

cation error. Truncation error is the discrepancy introduced by the fact that numeri-

cal methods may employ approximations to represent exact mathematical operations 

and quantities. Finally, we briel y discuss errors not directly connected with the 

numerical methods themselves. These include blunders, formulation or model errors, 

and data uncertainty.

 3.1 SIGNIFICANT FIGURES

This book deals extensively with approximations connected with the manipulation of 

numbers. Consequently, before discussing the errors associated with numerical methods, 

it is useful to review basic concepts related to approximate representation of the numbers 

themselves.

 Whenever we employ a number in a computation, we must have assurance that it 

can be used with coni dence. For example, Fig. 3.1 depicts a speedometer and odom-

eter from an automobile. Visual inspection of the speedometer indicates that the car is 

traveling between 48 and 49 km/h. Because the indicator is higher than the midpoint 

between the markers on the gauge, we can say with assurance that the car is traveling 

at approximately 49 km/h. We have coni dence in this result because two or more rea-

sonable individuals reading this gauge would arrive at the same conclusion. However, 

let us say that we insist that the speed be estimated to one decimal place. For this case, 
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FIGURE 3.1
An automobile speedometer and odometer illustrating the concept of a signifi cant fi gure.
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one person might say 48.8, whereas another might say 48.9 km/h. Therefore, because of 

the limits of this instrument, only the i rst two digits can be used with coni dence. Estimates 

of the third digit (or higher) must be viewed as approximations. It would be ludicrous to 

claim, on the basis of this speedometer, that the automobile is traveling at 48.8642138 km/h. 

In contrast, the odometer provides up to six certain digits. From Fig. 3.1, we can conclude 

that the car has traveled slightly less than 87,324.5 km during its lifetime. In this case, the 

seventh digit (and higher) is uncertain.

 The concept of a signii cant i gure, or digit, has been developed to formally designate 

the reliability of a numerical value. The signii cant digits of a number are those that can 

be used with coni dence. They correspond to the number of certain digits plus one esti-

mated digit. For example, the speedometer and the odometer in Fig. 3.1 yield readings 

of three and seven signii cant i gures, respectively. For the speedometer, the two certain 

digits are 48. It is conventional to set the estimated digit at one-half of the smallest scale 

division on the measurement device. Thus the speedometer reading would consist of the 

three signii cant i gures: 48.5. In a similar fashion, the odometer would yield a seven-

signii cant-i gure reading of 87,324.45.

 Although it is usually a straightforward procedure to ascertain the signii cant i gures 

of a number, some cases can lead to confusion. For example, zeros are not always sig-

nii cant i gures because they may be necessary just to locate a decimal point. The num-

bers 0.00001845, 0.0001845, and 0.001845 all have four signii cant i gures. Similarly, 

when trailing zeros are used in large numbers, it is not clear how many, if any, of the 

zeros are signii cant. For example, at face value the number 45,300 may have three, four, 

or i ve signii cant digits, depending on whether the zeros are known with coni dence. Such 

uncertainty can be resolved by using scientii c notation, where 4.53 3 104, 4.530 3 104, 

4.5300 3 104 designate that the number is known to three, four, and i ve signii cant i gures, 

respectively.

 The concept of signii cant i gures has two important implications for our study of 

numerical methods:

1. As introduced in the falling parachutist problem, numerical methods yield approxi-

mate results. We must, therefore, develop criteria to specify how coni dent we are in 

our approximate result. One way to do this is in terms of signii cant i gures. For 

example, we might decide that our approximation is acceptable if it is correct to four 

signii cant i gures.

2. Although quantities such as p, e, or 17 represent specii c quantities, they cannot be 

expressed exactly by a limited number of digits. For example,

p 5 3.141592653589793238462643 p

  ad ini nitum. Because computers retain only a i nite number of signii cant i gures, 

such numbers can never be represented exactly. The omission of the remaining 

signii cant i gures is called round-off error.

 Both round-off error and the use of signii cant i gures to express our coni dence in 

a numerical result will be explored in detail in subsequent sections. In addition, the 

concept of signii cant i gures will have relevance to our dei nition of accuracy and preci-

sion in the next section.
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 3.2 ACCURACY AND PRECISION

The errors associated with both calculations and measurements can be characterized with 

regard to their accuracy and precision. Accuracy refers to how closely a computed or 

measured value agrees with the true value. Precision refers to how closely individual 

computed or measured values agree with each other.

 These concepts can be illustrated graphically using an analogy from target practice. 

The bullet holes on each target in Fig. 3.2 can be thought of as the predictions of a nu-

merical technique, whereas the bull’s-eye represents the truth. Inaccuracy (also called bias) 

is dei ned as systematic deviation from the truth. Thus, although the shots in Fig. 3.2c are 

more tightly grouped than those in Fig. 3.2a, the two cases are equally biased because 

they are both centered on the upper left quadrant of the target. Imprecision (also called 

uncertainty), on the other hand, refers to the magnitude of the scatter. Therefore, although 

Fig. 3.2b and d are equally accurate (that is, centered on the bull’s-eye), the latter is 

more precise because the shots are tightly grouped.

 Numerical methods should be sufi ciently accurate or unbiased to meet the require-

ments of a particular engineering problem. They also should be precise enough for  adequate 
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FIGURE 3.2
An example from marksmanship illustrating the concepts of accuracy and precision. (a)  Inaccurate 
and imprecise; (b) accurate and imprecise; (c) inaccurate and precise; (d) accurate and precise.
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