

Enginneering $\mathbb{N u m e r i c a l ~}$ Methods

Materials Selected with supplementary notes by

Dr. Mohammed Ali AIMahamdy

Selected topics from Chapra \& Canale "Numerical Methods for Engineers" 7th edition

chapter 3

Approximations and Round-Off Errors

Because so many of the methods in this book are straightforward in description and application, it would be very tempting at this point for us to proceed directly to the main body of the text and teach you how to use these techniques. However, understanding the concept of error is so important to the effective use of numerical methods that we have chosen to devote the next two chapters to this topic.

The importance of error was introduced in our discussion of the falling parachutist in Chap. 1. Recall that we determined the velocity of a falling parachutist by both analytical and numerical methods. Although the numerical technique yielded estimates that were close to the exact analytical solution, there was a discrepancy, or error, because the numerical method involved an approximation. Actually, we were fortunate in that case because the availability of an analytical solution allowed us to compute the error exactly. For many applied engineering problems, we cannot obtain analytical solutions. Therefore, we cannot compute exactly the errors associated with our numerical methods. In these cases, we must settle for approximations or estimates of the errors.

Such errors are characteristic of most of the techniques described in this book. This statement might at first seem contrary to what one normally conceives of as sound engineering. Students and practicing engineers constantly strive to limit errors in their work. When taking examinations or doing homework problems, you are penalized, not rewarded, for your errors. In professional practice, errors can be costly and sometimes catastrophic. If a structure or device fails, lives can be lost.

Although perfection is a laudable goal, it is rarely, if ever, attained. For example, despite the fact that the model developed from Newton's second law is an excellent approximation, it would never in practice exactly predict the parachutist's fall. A variety of factors such as winds and slight variations in air resistance would result in deviations from the prediction. If these deviations are systematically high or low, then we might need to develop a new model. However, if they are randomly distributed and tightly grouped around the prediction, then the deviations might be considered negligible and the model deemed adequate. Numerical approximations also introduce similar discrepancies into the analysis. Again, the question is: How much the next error is present in our calculations and is it tolerable?

This chapter and Chap. 4 cover basic topics related to the identification, quantification, and minimization of these errors. In this chapter, general information concerned with the quantification of error is reviewed in the first sections. This is
followed by a section on one of the two major forms of numerical error: round-off error. Round-off error is due to the fact that computers can represent only quantities with a finite number of digits. Then Chap. 4 deals with the other major form: truncation error. Truncation error is the discrepancy introduced by the fact that numerical methods may employ approximations to represent exact mathematical operations and quantities. Finally, we briefly discuss errors not directly connected with the numerical methods themselves. These include blunders, formulation or model errors, and data uncertainty.

3.1 SIGNIFICANT FIGURES

This book deals extensively with approximations connected with the manipulation of numbers. Consequently, before discussing the errors associated with numerical methods, it is useful to review basic concepts related to approximate representation of the numbers themselves.

Whenever we employ a number in a computation, we must have assurance that it can be used with confidence. For example, Fig. 3.1 depicts a speedometer and odometer from an automobile. Visual inspection of the speedometer indicates that the car is traveling between 48 and $49 \mathrm{~km} / \mathrm{h}$. Because the indicator is higher than the midpoint between the markers on the gauge, we can say with assurance that the car is traveling at approximately $49 \mathrm{~km} / \mathrm{h}$. We have confidence in this result because two or more reasonable individuals reading this gauge would arrive at the same conclusion. However, let us say that we insist that the speed be estimated to one decimal place. For this case,

FIGURE 3.1
An automobile speedometer and odometer illustrating the concept of a significant figure.

one person might say 48.8 , whereas another might say $48.9 \mathrm{~km} / \mathrm{h}$. Therefore, because of the limits of this instrument, only the first two digits can be used with confidence. Estimates of the third digit (or higher) must be viewed as approximations. It would be ludicrous to claim, on the basis of this speedometer, that the automobile is traveling at $48.8642138 \mathrm{~km} / \mathrm{h}$. In contrast, the odometer provides up to six certain digits. From Fig. 3.1, we can conclude that the car has traveled slightly less than $87,324.5 \mathrm{~km}$ during its lifetime. In this case, the seventh digit (and higher) is uncertain.

The concept of a significant figure, or digit, has been developed to formally designate the reliability of a numerical value. The significant digits of a number are those that can be used with confidence. They correspond to the number of certain digits plus one estimated digit. For example, the speedometer and the odometer in Fig. 3.1 yield readings of three and seven significant figures, respectively. For the speedometer, the two certain digits are 48. It is conventional to set the estimated digit at one-half of the smallest scale division on the measurement device. Thus the speedometer reading would consist of the three significant figures: 48.5. In a similar fashion, the odometer would yield a seven-significant-figure reading of $87,324.45$.

Although it is usually a straightforward procedure to ascertain the significant figures of a number, some cases can lead to confusion. For example, zeros are not always significant figures because they may be necessary just to locate a decimal point. The numbers $0.00001845,0.0001845$, and 0.001845 all have four significant figures. Similarly, when trailing zeros are used in large numbers, it is not clear how many, if any, of the zeros are significant. For example, at face value the number 45,300 may have three, four, or five significant digits, depending on whether the zeros are known with confidence. Such uncertainty can be resolved by using scientific notation, where $4.53 \times 10^{4}, 4.530 \times 10^{4}$, 4.5300×10^{4} designate that the number is known to three, four, and five significant figures, respectively.

The concept of significant figures has two important implications for our study of numerical methods:

1. As introduced in the falling parachutist problem, numerical methods yield approximate results. We must, therefore, develop criteria to specify how confident we are in our approximate result. One way to do this is in terms of significant figures. For example, we might decide that our approximation is acceptable if it is correct to four significant figures.
2. Although quantities such as π, e, or $\sqrt{7}$ represent specific quantities, they cannot be expressed exactly by a limited number of digits. For example,

$$
\pi=3.141592653589793238462643 \ldots
$$

ad infinitum. Because computers retain only a finite number of significant figures, such numbers can never be represented exactly. The omission of the remaining significant figures is called round-off error.
Both round-off error and the use of significant figures to express our confidence in a numerical result will be explored in detail in subsequent sections. In addition, the concept of significant figures will have relevance to our definition of accuracy and precision in the next section.

3.2 ACCURACY AND PRECISION

The errors associated with both calculations and measurements can be characterized with regard to their accuracy and precision. Accuracy refers to how closely a computed or measured value agrees with the true value. Precision refers to how closely individual computed or measured values agree with each other.

These concepts can be illustrated graphically using an analogy from target practice. The bullet holes on each target in Fig. 3.2 can be thought of as the predictions of a numerical technique, whereas the bull's-eye represents the truth. Inaccuracy (also called bias) is defined as systematic deviation from the truth. Thus, although the shots in Fig. 3.2c are more tightly grouped than those in Fig. 3.2a, the two cases are equally biased because they are both centered on the upper left quadrant of the target. Imprecision (also called uncertainty), on the other hand, refers to the magnitude of the scatter. Therefore, although Fig. $3.2 b$ and d are equally accurate (that is, centered on the bull's-eye), the latter is more precise because the shots are tightly grouped.

Numerical methods should be sufficiently accurate or unbiased to meet the requirements of a particular engineering problem. They also should be precise enough for adequate

FIGURE 3.2
An example from marksmanship illustrating the concepts of accuracy and precision. (a) Inaccurate and imprecise; (b) accurate and imprecise; (c) inaccurate and precise; (d) accurate and precise.

[6]

