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engineering design. In this book, we will use the collective term error to represent both 

the inaccuracy and the imprecision of our predictions. With these concepts as background, 

we can now discuss the factors that contribute to the error of numerical computations.

 3.3 ERROR DEFINITIONS

Numerical errors arise from the use of approximations to represent exact mathematical 

operations and quantities. These include truncation errors, which result when approxima-

tions are used to represent exact mathematical procedures, and round-off errors, which 

result when numbers having limited signii cant i gures are used to represent exact num-

bers. For both types, the relationship between the exact, or true, result and the approxi-

mation can be formulated as

True value 5 approximation 1 error (3.1)

By rearranging Eq. (3.1), we i nd that the numerical error is equal to the discrepancy 

between the truth and the approximation, as in

Et 5 true value 2 approximation (3.2)

where Et is used to designate the exact value of the error. The subscript t is included to 

designate that this is the “true” error. This is in contrast to other cases, as described 

shortly, where an “approximate” estimate of the error must be employed.

 A shortcoming of this dei nition is that it takes no account of the order of magnitude 

of the value under examination. For example, an error of a centimeter is much more sig-

nii cant if we are measuring a rivet rather than a bridge. One way to account for the mag-

nitudes of the quantities being evaluated is to normalize the error to the true value, as in

True fractional relative error 5
true error

true value

where, as specii ed by Eq. (3.2), error 5 true value 2 approximation. The relative error 

can also be multiplied by 100 percent to express it as

et 5
true error

true value
 100% (3.3)

where et designates the true percent relative error.

 EXAMPLE 3.1 Calculation of Errors

Problem Statement. Suppose that you have the task of measuring the lengths of a 

bridge and a rivet and come up with 9999 and 9 cm, respectively. If the true values are 

10,000 and 10 cm, respectively, compute (a) the true error and (b) the true percent rela-

tive error for each case.

Solution.

(a) The error for measuring the bridge is [Eq. (3.2)]

Et 5 10,000 2 9999 5 1 cm
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 and for the rivet it is

Et 5 10 2 9 5 1 cm

(b) The percent relative error for the bridge is [Eq. (3.3)]

et 5
1

10,000
100% 5 0.01%

 and for the rivet it is

et 5
1

10
100% 5 10%

Thus, although both measurements have an error of 1 cm, the relative error for the rivet 

is much greater. We would conclude that we have done an adequate job of measuring 

the bridge, whereas our estimate for the rivet leaves something to be desired.

 Notice that for Eqs. (3.2) and (3.3), E and e are subscripted with a t to signify that 

the error is normalized to the true value. In Example 3.1, we were provided with this 

value. However, in actual situations such information is rarely available. For numerical 

methods, the true value will be known only when we deal with functions that can be 

solved analytically. Such will typically be the case when we investigate the theoretical 

behavior of a particular technique for simple systems. However, in real-world applications, 

we will obviously not know the true answer a priori. For these situations, an alternative 

is to normalize the error using the best available estimate of the true value, that is, to the 

approximation itself, as in

ea 5
approximate error

approximation
100% (3.4)

where the subscript a signii es that the error is normalized to an approximate value. Note 

also that for real-world applications, Eq. (3.2) cannot be used to calculate the error term 

for Eq. (3.4). One of the challenges of numerical methods is to determine error estimates 

in the absence of knowledge regarding the true value. For example, certain numerical 

methods use an iterative approach to compute answers. In such an approach, a present 

approximation is made on the basis of a previous approximation. This process is performed 

repeatedly, or iteratively, to successively compute (we hope) better and better approxima-

tions. For such cases, the error is often estimated as the difference between previous and 

current approximations. Thus, percent relative error is determined according to

ea 5
current approximation 2 previous approximation

current approximation
100% (3.5)

This and other approaches for expressing errors will be elaborated on in subsequent chapters.

 The signs of Eqs. (3.2) through (3.5) may be either positive or negative. If the 

approximation is greater than the true value (or the previous approximation is greater 

than the current approximation), the error is negative; if the approximation is less than 

the true value, the error is positive. Also, for Eqs. (3.3) to (3.5), the denominator may 
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be less than zero, which can also lead to a negative error. Often, when performing 

computations, we may not be concerned with the sign of the error, but we are interested 

in whether the percent absolute value is lower than a prespecii ed percent tolerance es. 

Therefore, it is often useful to employ the absolute value of Eqs. (3.2) through (3.5). 

For such cases, the computation is repeated until

ZeaZ , es (3.6)

If this relationship holds, our result is assumed to be within the prespecii ed acceptable 

level es. Note that for the remainder of this text, we will almost exclusively employ 

absolute values when we use relative errors.

 It is also convenient to relate these errors to the number of signii cant i gures in the 

approximation. It can be shown (Scarborough, 1966) that if the following criterion is 

met, we can be assured that the result is correct to at least n signii cant i gures.

es 5 (0.5 3 1022n)% (3.7)

 EXAMPLE 3.2 Error Estimates for Iterative Methods

Problem Statement. In mathematics, functions can often be represented by ini nite 

series. For example, the exponential function can be computed using

ex 5 1 1 x 1
x 

2

2
1

x 

3

3!
1 p 1

x  

n

n!
 (E3.2.1)

Thus, as more terms are added in sequence, the approximation becomes a better and better 

estimate of the true value of ex. Equation (E3.2.1) is called a Maclaurin series expansion.

 Starting with the simplest version, ex 5 1, add terms one at a time to estimate e0.5. 

After each new term is added, compute the true and approximate percent relative errors 

with Eqs. (3.3) and (3.5), respectively. Note that the true value is e0.5 5 1.648721 . . . . 

Add terms until the absolute value of the approximate error estimate ea falls below a 

prespecii ed error criterion es conforming to three signii cant i gures.

Solution. First, Eq. (3.7) can be employed to determine the error criterion that ensures 

a result is correct to at least three signii cant i gures:

es 5 (0.5 3 10223)% 5 0.05%

Thus, we will add terms to the series until ea falls below this level.

 The i rst estimate is simply equal to Eq. (E3.2.1) with a single term. Thus, the i rst es-

timate is equal to 1. The second estimate is then generated by adding the second term, as in

ex 5 1 1 x

or for x 5 0.5,

e0.5 5 1 1 0.5 5 1.5

This represents a true percent relative error of [Eq. (3.3)]

et 5
1.648721 2 1.5

1.648721
100% 5 9.02%
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Equation (3.5) can be used to determine an approximate estimate of the error, as in

ea 5
1.5 2 1

1.5
100% 5 33.3%

Because ea is not less than the required value of es, we would continue the computation 

by adding another term, x2y2!, and repeating the error calculations. The process is con-

tinued until ea , es. The entire computation can be summarized as

Terms Result Et (%) Ea (%)

1 1 39.3
2 1.5 9.02 33.3
3 1.625 1.44 7.69
4 1.645833333 0.175 1.27
5 1.648437500 0.0172 0.158
6 1.648697917 0.00142 0.0158

Thus, after six terms are included, the approximate error falls below es 5 0.05% and the 

computation is terminated. However, notice that, rather than three signii cant i gures, the 

result is accurate to i ve! This is because, for this case, both Eqs. (3.5) and (3.7) are con-

servative. That is, they ensure that the result is at least as good as they specify. Although, 

as discussed in Chap. 6, this is not always the case for Eq. (3.5), it is true most of the time.

[10]
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 3.4 ROUND-OFF ERRORS

As mentioned previously, round-off errors originate from the fact that computers retain 

only a i xed number of signii cant i gures during a calculation. Numbers such as p, e, 

or 27 cannot be expressed by a i xed number of signii cant i gures. Therefore, they 

cannot be represented exactly by the computer. In addition, because computers use a 

base-2 representation, they cannot precisely represent certain exact base-10 numbers. The 

discrepancy introduced by this omission of signii cant i gures is called round-off error.

3.4.1 Computer Representation of Numbers

Numerical round-off errors are directly related to the manner in which numbers are stored 

in a computer. The fundamental unit whereby information is represented is called a word. 

This is an entity that consists of a string of binary digits, or bits. Numbers are typically 

stored in one or more words. To understand how this is accomplished, we must i rst 

review some material related to number systems.

Number Systems. A number system is merely a convention for representing quantities. 

Because we have 10 i ngers and 10 toes, the number system that we are most familiar 

with is the decimal, or base-10, number system. A base is the number used as the refer-

ence for constructing the system. The base-10 system uses the 10 digits—0, 1, 2, 3, 4, 

5, 6, 7, 8, 9—to represent numbers. By themselves, these digits are satisfactory for 

counting from 0 to 9.

 For larger quantities, combinations of these basic digits are used, with the position 

or place value specifying the magnitude. The right-most digit in a whole number repre-

sents a number from 0 to 9. The second digit from the right represents a multiple of 10. 

The third digit from the right represents a multiple of 100 and so on. For example, if 

we have the number 86,409 then we have eight groups of 10,000, six groups of 1000, 

four groups of 100, zero groups of 10, and nine more units, or

(8 3 104) 1 (6 3 103) 1 (4 3 102) 1 (0 3 101) 1 (9 3 100) 5 86,409

 Figure 3.5a provides a visual representation of how a number is formulated in the 

base-10 system. This type of representation is called positional notation.

 Because the decimal system is so familiar, it is not commonly realized that there are 

alternatives. For example, if human beings happened to have had eight i ngers and eight 

toes, we would undoubtedly have developed an octal, or base-8, representation. In the 

same sense, our friend the computer is like a two-i ngered animal who is limited to two 

states—either 0 or 1. This relates to the fact that the primary logic units of digital com-

puters are on/off electronic components. Hence, numbers on the computer are represented 

with a binary, or base-2, system. Just as with the decimal system, quantities can be 

represented using positional notation. For example, the binary number 11 is equivalent 

to (1 3 21) 1 (1 3 20) 5 2 1 1 5 3 in the decimal system. Figure 3.5b illustrates a 

more complicated example.

Integer Representation. Now that we have reviewed how base-10 numbers can be 

represented in binary form, it is simple to conceive of how integers are represented on 

a computer. The most straightforward approach, called the signed magnitude method, 

employs the i rst bit of a word to indicate the sign, with a 0 for positive and a 1 for 
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Truncation Errors and 
the Taylor Series

Truncation errors are those that result from using an approximation in place of an 

exact mathematical procedure. For example, in Chap. 1 we approximated the deriva-

tive of velocity of a falling parachutist by a i nite-divided-difference equation of the 

form [Eq. (1.11)]

dy

dt
> 
¢y

¢t
5
y(ti11) 2 y(ti)

ti11 2 ti

(4.1)

A truncation error was introduced into the numerical solution because the difference 

equation only approximates the true value of the derivative (recall Fig. 1.4). In order to 

gain insight into the properties of such errors, we now turn to a mathematical formulation 

that is used widely in numerical methods to express functions in an approximate  fashion—

the Taylor series.

4.1 THE TAYLOR SERIES

Taylor’s theorem (Box 4.1) and its associated formula, the Taylor series, is of great 

value in the study of numerical methods. In essence, the Taylor series provides a means 

to predict a function value at one point in terms of the function value and its deriva-

tives at another point. In particular, the theorem states that any smooth function can 

be approximated as a polynomial.

A useful way to gain insight into the Taylor series is to build it term by term. For 

example, the i rst term in the series is

f(xi11)  >  f(xi) (4.2)

This relationship, called the zero-order approximation, indicates that the value of f at the 

new point is the same as its value at the old point. This result makes intuitive sense 

because if xi and xi+1 are close to each other, it is likely that the new value is probably 

similar to the old value.

Equation (4.2) provides a perfect estimate if the function being approximated is, in 

fact, a constant. However, if the function changes at all over the interval, additional terms 

[12]



82 TRUNCATION ERRORS AND THE TAYLOR SERIES

 Box 4.1 Taylor’s Theorem

Taylor’s Theorem
If the function f and its i rst n 1 1 derivatives are continuous on an in-

terval containing a and x, then the value of the function at x is given by

f(x) 5 f(a) 1 f ¿(a) (x 2 a) 1
f –(a)

2!
(x 2 a)2

   1
f (3)(a)

3!
(x 2 a)3 1 p

   1
f (n)(a)

n!
(x 2 a)n 1 Rn (B4.1.1)

where the remainder Rn is dei ned as

Rn 5 #
x

a

 
(x 2 t)n

n!
 f (n11)(t)dt (B4.1.2)

where t 5 a dummy variable. Equation (B4.1.1) is called the Taylor 

series or Taylor’s formula. If the remainder is omitted, the right side 

of Eq. (B4.1.1) is the Taylor polynomial approximation to f(x). In 

essence, the theorem states that any smooth function can be ap-

proximated as a polynomial.

 Equation (B4.1.2) is but one way, called the integral form, by 

which the remainder can be expressed. An alternative formulation 

can be derived on the basis of the integral mean-value theorem.

First Theorem of Mean for Integrals
If the function g is continuous and integrable on an interval contain-

ing a and x, then there exists a point j between a and x such that

#
x

a

g(t)  dt 5 g(j) (x 2 a) (B4.1.3)

In other words, this theorem states that the integral can be repre-

sented by an average value for the function g(j) times the interval 

length x 2 a. Because the average must occur between the mini-

mum and maximum values for the interval, there is a point x 5 j at 

which the function takes on the average value.

 The i rst theorem is in fact a special case of a second mean-

value theorem for integrals.

Second Theorem of Mean for Integrals
If the functions g and h are continuous and integrable on an interval 

containing a and x, and h does not change sign in the interval, then 

there exists a point j between a and x such that

#
x

a

g(t)h(t)dt 5 g(j) #
x

a

h(t)  dt (B4.1.4)

Thus, Eq. (B4.1.3) is equivalent to Eq. (B4.1.4) with h(t) 5 1.

 The second theorem can be applied to Eq. (B4.1.2) with

g(t) 5 f (n11)(t)  h(t) 5
(x 2 t)n

n!

As t varies from a to x, h(t) is continuous and does not change sign. 

Therefore, if f (n11)(t) is continuous, then the integral mean-value 

theorem holds and

Rn 5
f (n11)(j)

(n 1 1)!
(x 2 a)n11

This equation is referred to as the derivative or Lagrange form of 

the remainder.

of the Taylor series are required to provide a better estimate. For example, the i rst-order 

approximation is developed by adding another term to yield

f(xi11)  > f(xi) 1 f ¿(xi)(xi11 2 xi) (4.3)

The additional i rst-order term consists of a slope f 9(xi) multiplied by the distance between 

xi and xi+1. Thus, the expression is now in the form of a straight line and is capable of 

predicting an increase or decrease of the function between xi and xi+1.

 Although Eq. (4.3) can predict a change, it is exact only for a straight-line, or linear, 

trend. Therefore, a second-order term is added to the series to capture some of the cur-

vature that the function might exhibit:

f(xi11)  > f(xi) 1 f ¿(xi)(xi11 2 xi) 1
f –(xi)

2!
 (xi11 2 xi)

2 (4.4)
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In a similar manner, additional terms can be included to develop the complete Taylor 

series expansion:

f(xi11) 5 f(xi) 1 f ¿(xi)(xi11 2 xi) 1
f –(xi)

2!
(xi11 2 xi)

2

     1
f (3)(xi)

3!
 (xi11 2 xi)

3 1 p 1
f (n)(xi)

n!
 (xi11 2 xi)

n 1 Rn (4.5)

Note that because Eq. (4.5) is an ini nite series, an equal sign replaces the approximate 

sign that was used in Eqs. (4.2) through (4.4). A remainder term is included to account 

for all terms from n 1 1 to ini nity:

Rn 5
f (n11)(j)

(n 1 1)!
 (xi11 2 xi)

n11 (4.6)

where the subscript n connotes that this is the remainder for the nth-order approximation 

and j is a value of x that lies somewhere between xi and xi+1. The introduction of the j 

is so important that we will devote an entire section (Sec. 4.1.1) to its derivation. For 

the time being, it is sufi cient to recognize that there is such a value that provides an 

exact determination of the error.

 It is often convenient to simplify the Taylor series by dei ning a step size h 5 xi+1 2 xi 

and expressing Eq. (4.5) as

f(xi11) 5 f(xi) 1 f ¿(xi)h 1
f –(xi)

2!
 h2 1

f (3)(xi)

3!
 h3 1 p 1

f n(xi)

n!
 hn 1 Rn (4.7)

where the remainder term is now

Rn 5
f (n11)(j)

(n 1 1)!
 hn11 (4.8)

 EXAMPLE 4.1 Taylor Series Approximation of a Polynomial

Problem Statement. Use zero- through fourth-order Taylor series expansions to approxi-

mate the function

f (x) 5 20.1x4 2 0.15x3 2 0.5x2 2 0.25x 1 1.2

from xi 5 0 with h 5 1. That is, predict the function’s value at xi+1 5 1.

Solution. Because we are dealing with a known function, we can compute values for 

f(x) between 0 and 1. The results (Fig. 4.1) indicate that the function starts at f (0) 5 1.2 

and then curves downward to f (1) 5 0.2. Thus, the true value that we are trying to predict 

is 0.2.

 The Taylor series approximation with n 5 0 is [Eq. (4.2)]

f(xi11) . 1.2

[14]
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Thus, as in Fig. 4.1, the zero-order approximation is a constant. Using this formulation 

results in a truncation error [recall Eq. (3.2)] of

Et 5 0.2 2 1.2 5 21.0

at x 5 1.

 For n 5 1, the i rst derivative must be determined and evaluated at x 5 0:

f ¿(0) 5 20.4(0.0)3 2 0.45(0.0)2 2 1.0(0.0) 2 0.25 5 20.25

Therefore, the i rst-order approximation is [Eq. (4.3)]

f(xi11) . 1.2 2 0.25h

which can be used to compute f(1) 5 0.95. Consequently, the approximation begins to 

capture the downward trajectory of the function in the form of a sloping straight line 

(Fig. 4.1). This results in a reduction of the truncation error to

Et 5 0.2 2 0.95 5 20.75

 For n 5 2, the second derivative is evaluated at x 5 0:

f –(0) 5 21.2(0.0)2 2 0.9(0.0) 2 1.0 5 21.0

 Therefore, according to Eq. (4.4),

f(xi11) . 1.2 2 0.25h 2 0.5h2

and substituting h 5 1, f (1) 5 0.45. The inclusion of the second derivative now adds 

some downward curvature resulting in an improved estimate, as seen in Fig. 4.1. The 

truncation error is reduced further to 0.2 2 0.45 5 20.25.

FIGURE 4.1
The approximation of f (x) 5 20.1x4 2 0.15x3 2 0.5x2 2 0.25x 1 1.2 at x 5 1 by zero- order, 
fi rst-order, and second-order Taylor series expansions.

Second order 

First order 

Tru
e 

f (x)

1.0

0.5

0
xi = 0 xi + 1 = 1 x

f (xi + 1)

f (xi + 1) � f (xi) + f �(xi)h + h2

h

f �(xi)

2!

f (xi + 1) � f (xi) + f �(xi)h

f (xi + 1) � f (xi)

f (xi) Zero order
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 Additional terms would improve the approximation even more. In fact, the inclusion 

of the third and the fourth derivatives results in exactly the same equation we started with:

f(x) 5 1.2 2 0.25h 2 0.5h2 2 0.15h3 2 0.1h4

where the remainder term is

R4 5
f (5)(j)

5!
 h5 5 0

because the i fth derivative of a fourth-order polynomial is zero. Consequently, the Taylor 

series expansion to the fourth derivative yields an exact estimate at xi+1 5 1:

f(1) 5 1.2 2 0.25(1) 2 0.5(1)2 2 0.15(1)3 2 0.1(1)4 5 0.2

 In general, the nth-order Taylor series expansion will be exact for an nth-order 

polynomial. For other differentiable and continuous functions, such as exponentials and 

sinusoids, a i nite number of terms will not yield an exact estimate. Each additional term 

will contribute some improvement, however slight, to the approximation. This behavior 

will be demonstrated in Example 4.2. Only if an ini nite number of terms are added will 

the series yield an exact result.

 Although the above is true, the practical value of Taylor series expansions is that, 

in most cases, the inclusion of only a few terms will result in an approximation that is 

close enough to the true value for practical purposes. The assessment of how many terms 

are required to get “close enough” is based on the remainder term of the expansion. 

Recall that the remainder term is of the general form of Eq. (4.8). This relationship has 

two major drawbacks. First, j is not known exactly but merely lies somewhere between 

xi and xi+1. Second, to evaluate Eq. (4.8), we need to determine the (n 1 1)th derivative 

of f(x). To do this, we need to know f(x). However, if we knew f(x), there would be no 

need to perform the Taylor series expansion in the present context!

 Despite this dilemma, Eq. (4.8) is still useful for gaining insight into truncation errors. 

This is because we do have control over the term h in the equation. In other words, we 

can choose how far away from x we want to evaluate f(x), and we can control the num-

ber of terms we include in the expansion. Consequently, Eq. (4.8) is usually expressed as

Rn 5 O(hn11)

where the nomenclature O(hn11) means that the truncation error is of the order of hn11. That 

is, the error is proportional to the step size h raised to the (n 1 l)th power. Although this 

approximation implies nothing regarding the magnitude of the derivatives that multiply hn11, 

it is extremely useful in judging the comparative error of numerical methods based on Taylor 

series expansions. For example, if the error is O(h), halving the step size will halve the error. 

On the other hand, if the error is O(h2), halving the step size will quarter the error.

 In general, we can usually assume that the truncation error is decreased by the ad-

dition of terms to the Taylor series. In many cases, if h is sufi ciently small, the i rst- and 

other lower-order terms usually account for a disproportionately high percent of the error. 

Thus, only a few terms are required to obtain an adequate estimate. This property is 

illustrated by the following example.

[16]
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 EXAMPLE 4.2  Use of Taylor Series Expansion to Approximate a Function with an Infi nite 
  Number of Derivatives

Problem Statement. Use Taylor series expansions with n 5 0 to 6 to approximate 

f(x) 5 cos x at xi+1 5 py3 on the basis of the value of f(x) and its derivatives at xi 5 

py4. Note that this means that h 5 py3 2 py4 5 py12.

Solution. As with Example 4.1, our knowledge of the true function means that we can 

determine the correct value f(py3) 5 0.5.

 The zero-order approximation is [Eq. (4.3)]

f ap
3
b > cos ap

4
b 5 0.707106781

which represents a percent relative error of

et 5
0.5 2 0.707106781

0.5
100% 5 241.4%

For the i rst-order approximation, we add the i rst derivative term where f 9(x) 5 2sin x:

f ap
3
b > cos ap

4
b 2 sin ap

4
b a p

12
b 5 0.521986659

which has et 5 24.40 percent.

 For the second-order approximation, we add the second derivative term where 

f 0(x) 5 2cos x:

f ap
3
b > cos ap

4
b 2 sin ap

4
b a p

12
b 2

cos(py4)

2
 a p

12
b2

5 0.497754491

with et 5 0.449 percent. Thus, the inclusion of additional terms results in an improved 

estimate.

 The process can be continued and the results listed, as in Table 4.1. Notice that the 

derivatives never go to zero, as was the case with the polynomial in Example 4.1. There-

fore, each additional term results in some improvement in the estimate. However, also 

notice how most of the improvement comes with the initial terms. For this case, by the 

time we have added the third-order term, the error is reduced to 2.62 3 1022 percent, 

TABLE 4.1  Taylor series approximation of f(x) 5 cos x at xi11 5 p/3 using a base 
point of p/4. Values are shown for various orders (n) of approximation.

Order n f (n)(x) f(P/3) Et

 0 cos x 0.707106781 241.4
 1 2sin x 0.521986659 24.4
 2 2cos x 0.497754491 0.449
 3 sin x 0.499869147 2.62 3 1022

 4 cos x 0.500007551 21.51 3 1023

 5 2sin x 0.500000304 26.08 3 1025

 6 2cos x 0.499999988 2.44 3 1026

[17]
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PROBLEMS

 

   

4.2 The Maclaurin series expansion for cos x is

cos x 5 1 2
x 

2

2
1

x4

4!
2

x6

6!
1

x8

8!
2 p

Starting with the simplest version, cos x 5  1,  add terms one at a 

time to estimate cos(py3). After each new term is added, compute

the true and approximate percent relative errors. Use your pocket 

calculator to determine the true value. Add terms until the absolute 

value of the approximate error estimate falls below an error crite-

rion conforming to two signii cant i gures.

4.3 Perform  the  same  computation  as  in  Prob.  4.2,  but  use  the  

Maclaurin series expansion for the sin x to estimate sin(py3).

sin x 5 x 2
x3

3!
1

x5

5!
2

x7

7!
1 p

4.4 The Maclaurin series expansion for the arctangent of x is de-

i ned for Zx Z # 1 as

arctan x 5 a
q

n50

(21)n

2n 1 1
x 

2n11

(a) Write out the i rst four terms (n 5 0, . . . , 3).

(b) Starting with the simplest version, arctan x 5 x, add terms one 

at a time to estimate arctan(py6). After each new term is added, 

compute the true and approximate percent relative errors. Use 

your calculator to determine the true value. Add terms until the 

absolute value of the approximate error estimate falls below an 

error criterion conforming to two signii cant i gures.

4.5 Use  zero-  through  third-order  Taylor  series  expansions  to  

predict f (3) for

f (x) 5 25x3 2 6x2 1 7x 2 88

using a base point at x 5 1. Compute the true percent relative error 

et for each approximation.

4.6 Use zero- through fourth-order Taylor series expansions to pre-

dict f(2.5) for f(x) 5 ln x using a base point at x 5 1. Compute the 

true  percent  relative  error  et  for  each approximation.  Discuss  the  

meaning of the results.

[18]
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