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5
Bracketing Methods

This chapter on roots of equations deals with methods that exploit the fact that a function 

typically changes sign in the vicinity of a root. These techniques are called bracketing 

methods because two initial guesses for the root are required. As the name implies, these 

guesses must “bracket,” or be on either side of, the root. The particular methods described 

herein employ different strategies to systematically reduce the width of the bracket and, 

hence, home in on the correct answer.

As a prelude to these techniques, we will briel y discuss graphical methods for 

depicting functions and their roots. Beyond their utility for providing rough guesses, 

graphical techniques are also useful for visualizing the properties of the functions and 

the behavior of the various numerical methods.

5.1 GRAPHICAL METHODS

A simple method for obtaining an estimate of the root of the equation f(x) 5 0 is to 

make a plot of the function and observe where it crosses the x axis. This point, which 

represents the x value for which f(x) 5 0, provides a rough approximation of the root.

EXAMPLE 5.1 The Graphical Approach

Problem Statement. Use the graphical approach to determine the drag coefi cient c

needed for a parachutist of mass m 5 68.1 kg to have a velocity of 40 m/s after free-

falling for time t 5 10 s. Note: The acceleration due to gravity is 9.81 m/s2.

Solution. This problem can be solved by determining the root of Eq. (PT2.4) using the

parameters t 5 10, g 5 9.81, y 5 40, and m 5 68.1:

f(c) 5
9.81(68.1)

c
(1 2 e2(cy68.1)10) 2 40

or

f(c) 5
668.06

c
 (1 2 e20.146843c) 2 40 (E5.1.1)

Various values of c can be substituted into the right-hand side of this equation to compute

C H A P T E R
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124 BRACKETING METHODS

These points are plotted in Fig. 5.1. The resulting curve crosses the c axis between 12 and 

16. Visual inspection of the plot provides a rough estimate of the root of 14.75. The valid-

ity of the graphical estimate can be checked by substituting it into Eq. (E5.1.1) to yield

f(14.75) 5
668.06

14.75
 (1 2 e20.146843(14.75)) 2 40 5 0.100

which is close to zero. It can also be checked by substituting it into Eq. (PT2.3) along 

with the parameter values from this example to give

y 5
9.81(68.1)

14.75
 (1 2 e2 (14.75y68.1)10) 5 40.100

which is very close to the desired fall velocity of 40 m/s.

 c f (c)

 4 34.190
 8 17.712
 12 6.114
 16 22.230
 20 28.368

FIGURE 5.1
The graphical approach for determining the roots of an equation.
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 Graphical techniques are of limited practical value because they are not precise. However, 

graphical methods can be utilized to obtain rough estimates of roots. These estimates can be 

employed as starting guesses for numerical methods discussed in this and the next chapter.

 Aside from providing rough estimates of the root, graphical interpretations are im-

portant tools for understanding the properties of the functions and anticipating the pitfalls 

of the numerical methods. For example, Fig. 5.2 shows a number of ways in which roots 

can occur (or be absent) in an interval prescribed by a lower bound xl and an upper 

bound xu. Figure 5.2b depicts the case where a single root is bracketed by negative and 

positive values of f(x). However, Fig. 5.2d, where f(xl) and f(xu) are also on opposite 

sides of the x axis, shows three roots occurring within the interval. In general, if f(xl) 

and f(xu) have opposite signs, there are an odd number of roots in the interval. As indi-

cated by Fig. 5.2a and c, if f(xl) and f(xu) have the same sign, there are either no roots 

or an even number of roots between the values.

 Although these generalizations are usually true, there are cases where they do not 

hold. For example, functions that are tangential to the x axis (Fig. 5.3a) and discontinu-

ous functions (Fig. 5.3b) can violate these principles. An example of a function that is 

tangential to the axis is the cubic equation f(x) 5 (x 2 2)(x 2 2)(x 2 4). Notice that 

x 5 2 makes two terms in this polynomial equal to zero. Mathematically, x 5 2 is called 

a multiple root. At the end of Chap. 6, we will present techniques that are expressly 

designed to locate multiple roots.

 The existence of cases of the type depicted in Fig. 5.3 makes it difi cult to develop 

general computer algorithms guaranteed to locate all the roots in an interval. However, 

when used in conjunction with graphical approaches, the methods described in the 

FIGURE 5.2 
Illustration of a number of 
 general ways that a root may 
occur in an interval prescribed 
by a lower bound xl and an 
 upper bound xu. Parts (a) and 
(c) indicate that if both f(xl) and 
f(xu) have the same sign, either 
there will be no roots or there 
will be an even number of roots 
within the interval. Parts (b) and 
(d) indicate that if the function 
has different signs at the end 
points, there will be an odd 
number of roots in the interval.
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FIGURE 5.3 
Illustration of some exceptions to the general cases depicted in 
Fig. 5.2. (a) Multiple root that occurs when the function is tangen-
tial to the x axis. For this case, although the end points are of op-
posite signs, there are an even number of axis intersections for 
the interval. (b) Discontinuous function where end points of oppo-
site sign bracket an even number of roots. Special strategies are 
required for determining the roots for these cases.
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FIGURE 5.5
Step 1:  Choose lower xl and upper xu guesses for the root such that the function changes sign 

over the interval. This can be checked by ensuring that f(xl)f(xu) , 0.
Step 2:  An estimate of the root xr is determined by

xr 5
xl 1 xu

2

Step 3:  Make the following evaluations to determine in which subinterval the root lies:
(a)  If f(xl)f(xr) , 0, the root lies in the lower subinterval. Therefore, set xu 5 xr and return 

to step 2.
(b)  If f(xl)f(xr) . 0, the root lies in the upper subinterval. Therefore, set xl 5 xr and return 

to step 2.
(c) If f(xl)f(xr) 5 0, the root equals xr; terminate the computation.

5.2 THE BISECTION METHOD

When applying the graphical technique in Example 5.1, you have observed (Fig. 5.1) 

that f(x) changed sign on opposite sides of the root. In general, if f(x) is real and con-

tinuous in the interval from xl to xu and f(xl) and f(xu) have opposite signs, that is,

f(xl)  f(xu) , 0 (5.1)

then there is at least one real root between xl and xu.

Incremental search methods capitalize on this observation by locating an interval 

where the function changes sign. Then the location of the sign change (and consequently, 

the root) is identii ed more precisely by dividing the interval into a number of subinter-

vals. Each of these subintervals is searched to locate the sign change. The process is 

repeated and the root estimate rei ned by dividing the subintervals into i ner increments. 

We will return to the general topic of incremental searches in Sec. 5.4.

 The bisection method, which is alternatively called binary chopping, interval halving, 

or Bolzano’s method, is one type of incremental search method in which the interval is 

always divided in half. If a function changes sign over an interval, the function value at 

the midpoint is evaluated. The location of the root is then determined as lying at the 

midpoint of the subinterval within which the sign change occurs. The process is repeated 

to obtain rei ned estimates. A simple algorithm for the bisection calculation is listed in 

Fig. 5.5, and a graphical depiction of the method is provided in Fig. 5.6. The following 

example goes through the actual computations involved in the method.

[24]



128 BRACKETING METHODS

 EXAMPLE 5.3 Bisection

Problem Statement. Use bisection to solve the same problem approached graphically 

in Example 5.1.

Solution. The i rst step in bisection is to guess two values of the unknown (in the 

present problem, c) that give values for f(c) with different signs. From Fig. 5.1, we can 

see that the function changes sign between values of 12 and 16. Therefore, the initial 

estimate of the root xr lies at the midpoint of the interval

xr 5
12 1 16

2
5 14

This estimate represents a true percent relative error of et 5 5.3% (note that the true 

value of the root is 14.8011). Next we compute the product of the function value at the 

lower bound and at the midpoint:

f(12)   f(14) 5 6.114 (1.611) 5 9.850

which is greater than zero, and hence no sign change occurs between the lower bound 

and the midpoint. Consequently, the root must be located between 14 and 16. Therefore, 

we create a new interval by redei ning the lower bound as 14 and determining a revised 

root estimate as

xr 5
14 1 16

2
5 15

which represents a true percent error of et 5 1.3%. The process can be repeated to  obtain 

rei ned estimates. For example,

f(14)   f(15) 5 1.611(20.384) 5 20.619

1612

14 16

15

14

FIGURE 5.6 
A graphical depiction of the 
bisection method. This plot 
conforms to the fi rst three 
 iterations from Example 5.3.
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Therefore, the root is between 14 and 15. The upper bound is redei ned as 15, and the 

root estimate for the third iteration is calculated as

xr 5
14 1 15

2
5 14.5

which represents a percent relative error of et 5 2.0%. The method can be repeated until 

the result is accurate enough to satisfy your needs.

 In the previous example, you may have noticed that the true error does not decrease 

with each iteration. However, the interval within which the root is located is halved with 

each step in the process. As discussed in the next section, the interval width provides an 

exact estimate of the upper bound of the error for the bisection method.

5.2.1 Termination Criteria and Error Estimates

We ended Example 5.3 with the statement that the method could be continued to obtain 

a rei ned estimate of the root. We must now develop an objective criterion for deciding 

when to terminate the method.

 An initial suggestion might be to end the calculation when the true error falls 

below some prespecii ed level. For instance, in Example 5.3, the relative error dropped 

to 2.0 percent during the course of the computation. We might decide that we should 

terminate when the error drops below, say, 0.1 percent. This strategy is l awed because 

the error estimates in the example were based on knowledge of the true root of the 

function. This would not be the case in an actual situation because there would be no 

point in using the method if we already knew the root.

 Therefore, we require an error estimate that is not contingent on foreknowledge of 

the root. As developed previously in Sec. 3.3, an approximate percent relative error ea 

can be calculated, as in [recall Eq. (3.5)]

ea 5 ` xnew
r 2 xold

r

xnew
r

` 100% (5.2)

where xnew
r  is the root for the present iteration and xold

r  is the root from the previous it-

eration. The absolute value is used because we are usually concerned with the magnitude 

of ea rather than with its sign. When ea becomes less than a prespecii ed stopping cri-

terion es, the computation is terminated.

 EXAMPLE 5.4 Error Estimates for Bisection

Problem Statement. Continue Example 5.3 until the approximate error falls below a 

stopping criterion of es 5 0.5%. Use Eq. (5.2) to compute the errors.

Solution. The results of the i rst two iterations for Example 5.3 were 14 and 15. Sub-

stituting these values into Eq. (5.2) yields

ZeaZ 5 ` 15 2 14

15
`  100% 5 6.667%

[26]



130 BRACKETING METHODS

Recall that the true percent relative error for the root estimate of 15 was 1.3%. Therefore, 

ea is greater than et. This behavior is manifested for the other iterations:

Thus, after six iterations ea i nally falls below es 5 0.5%, and the computation can 

be terminated.

These results are summarized in Fig. 5.7. The “ragged” nature of the true error is due 

to the fact that, for bisection, the true root can lie anywhere within the bracketing interval. 

The true and approximate errors are far apart when the interval happens to be centered on 

the true root. They are close when the true root falls at either end of the interval.

Iteration xl xu xr Ea (%) et (%)

 1 12 16 14 5.413
 2 14 16 15 6.667 1.344
 3 14 15 14.5 3.448 2.035
 4 14.5 15 14.75 1.695 0.345
 5 14.75 15 14.875 0.840 0.499
 6 14.75 14.875 14.8125 0.422 0.077

[27]



5.3 THE FALSE-POSITION METHOD 135

5.3 THE FALSE-POSITION METHOD

Although bisection is a perfectly valid technique for determining roots, its “brute-force” 

approach is relatively inefi cient. False position is an alternative based on a graphical insight.

A shortcoming of the bisection method is that, in dividing the interval from xl to xu 

into equal halves, no account is taken of the magnitudes of f(xl) and f(xu). For example, 

if f(xl) is much closer to zero than f(xu), it is likely that the root is closer to xl than to 

xu (Fig. 5.12). An alternative method that exploits this graphical insight is to join f(xl) 

and f(xu) by a straight line. The intersection of this line with the x axis represents an 

improved estimate of the root. The fact that the replacement of the curve by a straight 

line gives a “false position” of the root is the origin of the name, method of false  position, 

or in Latin, regula falsi. It is also called the linear interpolation method.

Using similar triangles (Fig. 5.12), the intersection of the straight line with the 

x axis can be estimated as

f(xl)

xr 2 xl

5
f(xu)

xr 2 xu

(5.6)

which can be solved for (see Box 5.1 for details).

xr 5 xu 2
f(xu)(xl 2 xu)

f(xl) 2 f(xu)
(5.7)

FIGURE 5.12 
A graphical depiction of the 
method of false position. Similar 
triangles used to derive the for-
mula for the method are 
shaded.

x

f (x)

f (xl)

f (xu)

xu

xl

xr
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This is the false-position formula. The value of xr computed with Eq. (5.7) then replaces 

whichever of the two initial guesses, xl or xu, yields a function value with the same sign 

as f(xr). In this way, the values of xl and xu always bracket the true root. The process is 

repeated until the root is estimated adequately. The algorithm is identical to the one for 

bisection (Fig. 5.5) with the exception that Eq. (5.7) is used for step 2. In addition, the 

same stopping criterion [Eq. (5.2)] is used to terminate the computation.

 EXAMPLE 5.5 False Position

Problem Statement. Use the false-position method to determine the root of the same 

equation investigated in Example 5.1 [Eq. (E5.1.1)].

Solution. As in Example 5.3, initiate the computation with guesses of xl 5 12 and 

xu 5 16.

First iteration:

xl 5 12    f (xl) 5 6.1139

xu 5 16   f (xu) 5 22.2303

xr 5 16 2
22.2303(12 2 16)

6.1139 2 (22.2303)
5 14.309

which has a true relative error of 0.88 percent.

Second iteration:

f(xl)  f(xr) 5 21.5376

 Box 5.1 Derivation of the Method of False Position

Cross-multiply Eq. (5.6) to yield

f (xl) (xr 2 xu) 5 f (xu) (xr 2 xl)

Collect terms and rearrange:

xr [ f(xl) 2 f (xu) ] 5 xu f (xl) 2 xl f (xu)

Divide by f(xl) 2 f(xu):

xr 5
xu f (xl) 2 xl f (xu)

f (xl) 2 f (xu)
 (B5.1.1)

This is one form of the method of false position. Note that it al-

lows the computation of the root xr as a function of the lower and 

upper guesses xl and xu. It can be put in an alternative form by 

expanding it:

xr 5
xu f (xl)

f (xl) 2 f (xu)
2

xl f (xu)

f (xl) 2 f (xu)

then adding and subtracting xu on the right-hand side:

xr 5 xu 1
xu f (xl)

f (xl) 2 f (xu)
2 xu 2

xl f (xu)

f (xl) 2 f (xu)

Collecting terms yields

xr 5 xu 1
xu f (xu)

f (xl) 2 f (xu)
2

xl f (xu)

f (xl) 2 f(xu)

or

xr 5 xu 2
f (xu) (xl 2 xu)

f (xl) 2 f (xu)

which is the same as Eq. (5.7). We use this form because it involves 

one less function evaluation and one less multiplication than Eq. 

(B5.1.1). In addition, it is directly comparable with the secant 

method, which will be discussed in Chap. 6.

[29]



 5.3 THE FALSE-POSITION METHOD 137

Therefore, the root lies in the i rst subinterval, and xr becomes the upper limit for the 

next iteration, xu 5 14.9113:

xl 5 12       f(xl) 5 6.1139

xu 5 14.9309   f(xu) 5 20.2515

xr 5 14.9309 2
20.2515(12 2 14.9309)

6.1139 2 (20.2515)
5 14.8151

which has true and approximate relative errors of 0.09 and 0.78 percent. Additional 

 iterations can be performed to rei ne the estimate of the roots.

FIGURE 5.13 
Comparison of the relative 
 errors of the bisection and the 
false-position methods.
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 A feeling for the relative efi ciency of the bisection and false-position methods can 

be appreciated by referring to Fig. 5.13, where we have plotted the true percent relative 

errors for Examples 5.4 and 5.5. Note how the error for false position decreases much 

faster than for bisection because of the more efi cient scheme for root location in the 

false-position method.

 Recall in the bisection method that the interval between xl and xu grew smaller  during 

the course of a computation. The interval, as dei ned by ¢xy2 5 Z xu 2 xl Z
 
y2 for the i rst 

iteration, therefore provided a measure of the error for this approach. This is not the case 

[30]
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for the method of false position because one of the initial guesses may stay i xed through-

out the computation as the other guess converges on the root. For instance, in Example 5.5 

the lower guess xl remained at 12 while xu converged on the root. For such cases, the 

interval does not shrink but rather approaches a constant value.

 Example 5.5 suggests that Eq. (5.2) represents a very conservative error criterion. 

In fact, Eq. (5.2) actually constitutes an approximation of the discrepancy of the previous 

iteration. This is because for a case such as Example 5.5, where the method is converg-

ing quickly (for example, the error is being reduced nearly an order of magnitude per 

iteration), the root for the present iteration xnew
r  is a much better estimate of the true value 

than the result of the previous iteration xold
r . Thus, the quantity in the numerator of Eq. (5.2) 

actually represents the discrepancy of the previous iteration. Consequently, we are assured 

that satisfaction of Eq. (5.2) ensures that the root will be known with greater accuracy 

than the prescribed tolerance. However, as described in the next section, there are cases 

where false position converges slowly. For these cases, Eq. (5.2) becomes unreliable, and 

an alternative stopping criterion must be developed.

5.3.1 Pitfalls of the False-Position Method

Although the false-position method would seem to always be the bracketing method of 

preference, there are cases where it performs poorly. In fact, as in the following example, 

there are certain cases where bisection yields superior results.

 EXAMPLE 5.6 A Case Where Bisection Is Preferable to False Position

Problem Statement. Use bisection and false position to locate the root of

f(x) 5 x10
2 1

between x 5 0 and 1.3.

Solution. Using bisection, the results can be summarized as

Iteration xl xu xr �a  (%) �t  (%)

 1 0 1.3 0.65 100.0 35
 2 0.65 1.3 0.975 33.3 2.5
 3 0.975 1.3 1.1375 14.3 13.8
 4 0.975 1.1375 1.05625 7.7 5.6
 5 0.975 1.05625 1.015625 4.0 1.6

Thus, after i ve iterations, the true error is reduced to less than 2 percent. For false 

position, a very different outcome is obtained:

Iteration xl xu xr �a (%) �t (%)

 1 0 1.3 0.09430  90.6
 2 0.09430 1.3 0.18176 48.1 81.8
 3 0.18176 1.3 0.26287 30.9 73.7
 4 0.26287 1.3 0.33811 22.3 66.2
 5 0.33811 1.3 0.40788 17.1 59.2

[31]
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 After i ve iterations, the true error has only been reduced to about 59 percent. In 

addition, note that ea , et. Thus, the approximate error is misleading. Insight into these 

results can be gained by examining a plot of the function. As in Fig. 5.14, the curve 

violates the premise upon which false position was based—that is, if f(xl) is much closer 

to zero than f(xu), then the root is closer to xl than to xu (recall Fig. 5.12). Because of 

the shape of the present function, the opposite is true.

FIGURE 5.14 
Plot of f (x) 5 x10 2 1, illustrating slow convergence of the false-position method.
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The forgoing example illustrates that blanket generalizations regarding root-location 

methods are usually not possible. Although a method such as false position is often supe-

rior to bisection, there are invariably cases that violate this general conclusion. Therefore, 

in addition to using Eq. (5.2), the results should always be checked by substituting the root 

estimate into the original equation and determining whether the result is close to zero. Such 

a check should be incorporated into all computer programs for root location.

The example also illustrates a major weakness of the false-position method: its one-

sidedness. That is, as iterations are proceeding, one of the bracketing points will tend to 

stay i xed. This can lead to poor convergence, particularly for functions with signii cant 

curvature. The following section provides a remedy.[32]
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PROBLEMS

5.1 Determine the real roots of f (x) 5 20.5x2
1 2.5x 1 4.5:

(a) Graphically.

(b) Using the quadratic formula.

(c) Using three iterations of the bisection method to determine the 

highest root. Employ initial guesses of xl 5 5 and xu 5 10. 

Compute the estimated error ea and the true error et after each 

iteration.

5.2 Determine the real root of f (x) 5 5x3
2 5x2

1 6x 2 2:

(a) Graphically.

(b) Using bisection to locate the root. Employ initial guesses of 

xl 5 0 and xu 5 1 and iterate until the estimated error ea falls 

below a level of es 5 10%.

5.3 Determine the real root of f (x) 5 225 1 82x 2 90x2 
1

44x3
2 8x4

1 0.7x5:

(a) Graphically.

(b) Using bisection to determine the root to es 5 10%. Employ 

initial guesses of xl 5 0.5 and xu 5 1.0.

(c) Perform the same computation as in (b) but use the false-

position method and es 5 0.2%.

5.4 (a) Determine the roots of f (x) 5 212 2 21x 1 18x2
2

2.75x3 graphically. In addition, determine the i rst root of the function 

with (b) bisection, and (c) false position. For (b) and (c) use initial 

guesses of xl 5 21 and xu 5 0, and a stopping criterion of 1%.

5.5 Locate the i rst nontrivial root of sin x 5 x2 where x is in radi-

ans. Use a graphical technique and bisection with the initial interval 

from 0.5 to 1. Perform the computation until ea is less than es 5 2%. 

Also perform an error check by substituting your i nal answer into 

the original equation.

5.6 Determine the positive real root of ln (x2) 5 0.7 (a) graphi-

cally, (b) using three iterations of the bisection method, with initial 

guesses of xl 5 0.5 and xu 5 2, and (c) using three iterations of the 

false-position method, with the same initial guesses as in (b).

5.7 Determine the real root of f (x) 5 (0.8 2 0.3x)yx:

(a) Analytically.

(b) Graphically.

(c) Using three iterations of the false-position method and initial 

guesses of 1 and 3. Compute the approximate error ea and 

the true error et after each iteration. Is there a problem with 

the result?

5.8 Find the positive square root of 18 using the false-position 

method to within es 5 0.5%. Employ initial guesses of xl 5 4 and 

xu 5 5.

5.9 Find the smallest positive root of the function (x is in radians) 

x2Zcos 1x Z 5 5 using the false-position method. To locate the re-

gion in which the root lies, i rst plot this function for values of x 

between 0 and 5. Perform the computation until ea falls below 

es 5 1%. Check your i nal answer by substituting it into the orig-

inal function.

5.10 Find the positive real root of f (x) 5 x4
2 8x3

2 35x2 
1 

450x 2 1001 using the false-position method. Use initial guesses 

of xl 5 4.5 and xu 5 6 and perform i ve iterations. Compute both 

the true and approximate errors based on the fact that the root is 

5.60979. Use a plot to explain your results and perform the compu-

tation to within es 5 1.0%.

5.11 Determine the real root of x3.5
5 80: (a) analytically and 

(b) with the false-position method to within es 5 2.5%. Use initial 

guesses of 2.0 and 5.0.

5.12 Given

f (x) 5 22x6
2 1.5x4

1 10x 1 2

Use bisection to determine the maximum of this function. Employ 

initial guesses of xl 5 0 and xu 5 1, and perform iterations until 

the approximate relative error falls below 5%.

5.13 The velocity y of a falling parachutist is given by

y 5
gm

c
(1 2 e2 (cym)t)

where g 5 9.81 mys2. For a parachutist with a drag coefi cient

c 5 15 kg/s, compute the mass m so that the velocity is y 5 36 m/s 

at t 5 10 s. Use the false-position method to determine m to a level 

of es 5 0.1%.

5.14 Use bisection to determine the drag coefi cient needed so that 

an 82-kg parachutist has a velocity of 36 m/s after 4 s of free fall. 

Note: The acceleration of gravity is 9.81 m/s2. Start with initial 

guesses of xl 5 3 and xu 5 5 and iterate until the approximate 

relative error falls below 2%. Also perform an error check by sub-

stituting your i nal answer into the original equation.

5.15 As depicted in Fig. P5.15, the velocity of water, y (m/s), 

 discharged from a cylindrical tank through a long pipe can be 

computed as

[33]
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