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Open Methods

For the bracketing methods in Chap. 5, the root is located within an interval prescribed 

by a lower and an upper bound. Repeated application of these methods always results 

in closer estimates of the true value of the root. Such methods are said to be convergent 

because they move closer to the truth as the computation progresses (Fig. 6.1a).

In contrast, the open methods described in this chapter are based on formulas 

that require only a single starting value of x or two starting values that do not 

FIGURE 6.1
Graphical depiction of the 
 fundamental difference between 
the (a) bracketing and (b) and 
(c) open methods for root 
 location. In (a), which is the 
 bisection method, the root is 
constrained within the interval 
prescribed by xl and xu. In 
 contrast, for the open method 
 depicted in (b) and (c), a 
 formula is used to project from 
xi to xi11 in an iterative fashion. 
Thus, the method can either (b) 
diverge or (c) converge rapidly, 
depending on the value of the 
initial guess.
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 necessarily bracket the root. As such, they sometimes diverge or move away from 

the true root as the computation progresses (Fig. 6.1b). However, when the open 

methods converge (Fig. 6.1c), they usually do so much more quickly than the brack-

eting methods. We will begin our discussion of open techniques with a simple version 

that is useful for illustrating their general form and also for demonstrating the con-

cept of convergence.

 6.1 SIMPLE FIXED-POINT ITERATION

As mentioned above, open methods employ a formula to predict the root. Such a formula 

can be developed for simple i xed-point iteration (or, as it is also called, one-point it-

eration or successive substitution) by rearranging the function f(x) 5 0 so that x is on 

the left-hand side of the equation:

x 5 g(x) (6.1)

This transformation can be accomplished either by algebraic manipulation or by simply 

adding x to both sides of the original equation. For example,

x2
2 2x 1 3 5 0

can be simply manipulated to yield

x 5
x2

1 3

2

whereas sin x 5 0 could be put into the form of Eq. (6.1) by adding x to both sides 

to yield

x 5  sin  x 1 x

 The utility of Eq. (6.1) is that it provides a formula to predict a new value of x as 

a function of an old value of x. Thus, given an initial guess at the root xi, Eq. (6.1) can 

be used to compute a new estimate xi11 as expressed by the iterative formula

xi11 5 g(xi) (6.2)

As with other iterative formulas in this book, the approximate error for this equation can 

be determined using the error estimator [Eq. (3.5)]:

ea 5 ` xi11 2 xi

xi11

` 100%

 EXAMPLE 6.1 Simple Fixed-Point Iteration

Problem Statement. Use simple i xed-point iteration to locate the root of f(x) 5 e2x 2 x.

Solution. The function can be separated directly and expressed in the form of Eq. (6.2) as

xi11 5 e2xi

[40]
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Starting with an initial guess of x0 5 0, this iterative equation can be applied to compute

 i xi Ea (%) Et (%)

 0 0  100.0
 1 1.000000 100.0 76.3
 2 0.367879 171.8 35.1
 3 0.692201 46.9 22.1
 4 0.500473 38.3 11.8
 5 0.606244 17.4 6.89
 6 0.545396 11.2 3.83
 7 0.579612 5.90 2.20
 8 0.560115 3.48 1.24
 9 0.571143 1.93 0.705
 10 0.564879 1.11 0.399

Thus, each iteration brings the estimate closer to the true value of the root: 0.56714329.

6.1.1 Convergence

Notice that the true percent relative error for each iteration of Example 6.1 is roughly 

proportional (by a factor of about 0.5 to 0.6) to the error from the previous iteration. 

This property, called linear convergence, is characteristic of i xed-point iteration.

 Aside from the “rate” of convergence, we must comment at this point about the 

“possibility” of convergence. The concepts of convergence and divergence can be de-

picted graphically. Recall that in Sec. 5.1, we graphed a function to visualize its structure 

and behavior (Example 5.1). Such an approach is employed in Fig. 6.2a for the function 

f(x) 5 e2x 2 x. An alternative graphical approach is to separate the equation into two 

component parts, as in

f1(x) 5 f2(x)

Then the two equations

y1 5 f1(x) (6.3)

and

y2 5 f2(x) (6.4)

can be plotted separately (Fig. 6.2b). The x values corresponding to the intersections of 

these functions represent the roots of f(x) 5 0.

 EXAMPLE 6.2 The Two-Curve Graphical Method

Problem Statement. Separate the equation e2x 2 x 5 0 into two parts and determine 

its root graphically.

[41]
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These points are plotted in Fig. 6.2b. The intersection of the two curves indicates a root 

estimate of approximately x 5 0.57, which corresponds to the point where the single 

curve in Fig. 6.2a crosses the x axis.

Solution. Reformulate the equation as y1 5 x and y2 5 e2x. The following values can 

be computed:

 x y1 y2

 0.0 0.0 1.000
 0.2 0.2 0.819
 0.4 0.4 0.670
 0.6 0.6 0.549
 0.8 0.8 0.449
 1.0 1.0 0.368

FIGURE 6.2
Two alternative graphical 
 methods for determining the root 
of f(x) 5 e2x 2 x. (a) Root at 
the point where it crosses the 
x axis; (b) root at the intersec-
tion of the component functions.
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 The two-curve method can now be used to illustrate the convergence and divergence 

of i xed-point iteration. First, Eq. (6.1) can be reexpressed as a pair of equations y1 5 x 

and y2 5 g(x). These two equations can then be plotted separately. As was the case with 

Eqs. (6.3) and (6.4), the roots of f(x) 5 0 correspond to the abscissa value at the inter-

section of the two curves. The function y1 5 x and four different shapes for y2 5 g(x) 

are plotted in Fig. 6.3.

 For the i rst case (Fig. 6.3a), the initial guess of x0 is used to determine the corre-

sponding point on the y2 curve [x0, g(x0)]. The point (x1, x1) is located by moving left 

horizontally to the y1 curve. These movements are equivalent to the i rst iteration in the 

i xed-point method:

x1 5 g(x0)

Thus, in both the equation and in the plot, a starting value of x0 is used to obtain an 

estimate of x1. The next iteration consists of moving to [x1, g(x1)] and then to (x2, x2). 

This iteration is equivalent to the equation

x2 5 g(x1)

FIGURE 6.3
Iteration cobwebs depicting 
convergence (a and b) and 
 divergence (c and d) of simple 
fi xed-point iteration. Graphs (a) 
and (c) are called monotone 
patterns, whereas (b) and (d) 
are called oscillating or spiral 
patterns. Note that convergence 
occurs when |g9(x)| , 1.
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The solution in Fig. 6.3a is convergent because the estimates of x move closer to the 

root with each iteration. The same is true for Fig. 6.3b. However, this is not the case 

for Fig. 6.3c and d, where the iterations diverge from the root. Notice that convergence 

seems to occur only when the absolute value of the slope of y2 5 g(x) is less than 

the slope of y1 5 x, that is, when u g9(x)u  , 1. Box 6.1 provides a theoretical deriva-

tion of this result.

6.1.2 Algorithm for Fixed-Point Iteration

The computer algorithm for i xed-point iteration is extremely simple. It consists of a 

loop to iteratively compute new estimates until the termination criterion has been met. 

Figure 6.4 presents pseudocode for the algorithm. Other open methods can be pro-

grammed in a similar way, the major modii cation being to change the iterative formula 

that is used to compute the new root estimate.

 Box 6.1 Convergence of Fixed-Point Iteration

From studying Fig. 6.3, it should be clear that i xed-point iteration 

converges if, in the region of interest, u g9(x)u  , 1. In other words, 

convergence occurs if the magnitude of the slope of g(x) is less than 

the slope of the line f(x) 5 x. This observation can be demonstrated 

theoretically. Recall that the iterative equation is

xi11 5 g(xi)

Suppose that the true solution is

xr 5 g(xr)

Subtracting these equations yields

xr 2 xi11 5 g(xr) 2 g(xi) (B6.1.1)

The derivative mean-value theorem (recall Sec. 4.1.1) states that if 

a function g(x) and its i rst derivative are continuous over an inter-

val a # x # b, then there exists at least one value of x 5 j within 

the interval such that

g¿(j) 5
g(b) 2 g(a)

b 2 a
 (B6.1.2)

The right-hand side of this equation is the slope of the line joining 

g(a) and g(b). Thus, the mean-value theorem states that there is at 

least one point between a and b that has a slope, designated by g9(j), 

which is parallel to the line joining g(a) and g(b) (recall Fig. 4.3).

 Now, if we let a 5 xi and b 5 xr, the right-hand side of Eq. 

(B6.1.1) can be expressed as

g(xr) 2 g(xi) 5 (xr 2 xi)g¿(j)

where j is somewhere between xi and xr. This result can then be 

substituted into Eq. (B6.1.1) to yield

xr 2 x i11 5 (xr 2 xi)g¿(j) (B6.1.3)

If the true error for iteration i is dei ned as

Et,i 5 xr 2 xi

then Eq. (B6.1.3) becomes

Et,i11 5 g¿(j)Et,i

Consequently, if u g9(x)u  , 1, the errors decrease with each iteration. 

For u g9(x)u  . 1, the errors grow. Notice also that if the derivative is 

positive, the errors will be positive, and hence, the iterative solution 

will be monotonic (Fig. 6.3a and c). If the derivative is negative, the 

errors will oscillate (Fig. 6.3b and d).

 An offshoot of the analysis is that it also demonstrates that when 

the method converges, the error is roughly proportional to and less 

than the error of the previous step. For this reason, simple i xed-

point iteration is said to be linearly convergent.

[44]
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FUNCTION Fixpt(x0, es, imax, iter, ea)

 xr 5 x0

 iter 5 0

 DO

   xrold 5 xr

   xr 5 g(xrold)

   iter 5 iter 1 1

   IF xr ? O THEN

     ea 5 ` xr 2 xrold

xr
` ? 100

   END IF

   IF ea , es OR iter $ imax EXIT

 END DO

 Fixpt 5 xr

END Fixpt

FIGURE 6.4
Pseudocode for fi xed-point 
 iteration. Note that other open 
methods can be cast in this 
 general format.
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FIGURE 6.5
Graphical depiction of the 
Newton-Raphson method.
A tangent to the function of xi 
[that is, f9(xi)] is extrapolated 
down to the x axis to provide 
an estimate of the root at xi11.
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