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 6.2 THE NEWTON-RAPHSON METHOD

Perhaps the most widely used of all root-locating formulas is the Newton-Raphson equa-

tion (Fig. 6.5). If the initial guess at the root is xi, a tangent can be extended from the 

point [xi, f(xi)]. The point where this tangent crosses the x axis usually represents an 

improved estimate of the root.
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 The Newton-Raphson method can be derived on the basis of this geometrical inter-

pretation (an alternative method based on the Taylor series is described in Box 6.2). As 

in Fig. 6.5, the i rst derivative at x is equivalent to the slope:

f ¿(xi) 5
f (xi) 2 0

xi 2 xi11

 (6.5)

which can be rearranged to yield

xi11 5 xi 2
f(xi)

f ¿(xi)
 (6.6)

which is called the Newton-Raphson formula.

 EXAMPLE 6.3 Newton-Raphson Method

Problem Statement. Use the Newton-Raphson method to estimate the root of f(x) 5 

e2x 2 x, employing an initial guess of x0 5 0.

Solution. The i rst derivative of the function can be evaluated as

f ¿(x) 5 2e2x
2 1

which can be substituted along with the original function into Eq. (6.6) to give

xi11 5 xi 2
e2xi 2 xi

2e2xi 2 1

Starting with an initial guess of x0 5 0, this iterative equation can be applied to compute

i xi Et (%)

0 0 100
1 0.500000000 11.8
2 0.566311003 0.147
3 0.567143165 0.0000220
4 0.567143290 , 1028

Thus, the approach rapidly converges on the true root. Notice that the true percent  relative 

error at each iteration decreases much faster than it does in simple i xed-point iteration 

(compare with Example 6.1).

6.2.1 Termination Criteria and Error Estimates

As with other root-location methods, Eq. (3.5) can be used as a termination criterion. In 

addition, however, the Taylor series derivation of the method (Box 6.2) provides theo-

retical insight regarding the rate of convergence as expressed by Ei11 5 O(E2
i ). Thus the 

error should be roughly proportional to the square of the previous error. In other words, 
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the number of signii cant i gures of accuracy approximately doubles with each iteration. 

This behavior is examined in the following example.

 EXAMPLE 6.4 Error Analysis of Newton-Raphson Method

Problem Statement. As derived in Box 6.2, the Newton-Raphson method is quadrati-

cally convergent. That is, the error is roughly proportional to the square of the previous 

error, as in

Et,i11 >  
2f –(xr)

2f ¿(xr)
 E2

t,i (E6.4.1)

Examine this formula and see if it applies to the results of Example 6.3.

Solution. The i rst derivative of f(x) 5 e2x 2 x is

f ¿(x) 5 2e2x
2 1

 Box 6.2 Derivation and Error Analysis of the Newton-Raphson Method

Aside from the geometric derivation [Eqs. (6.5) and (6.6)], the 

Newton-Raphson method may also be developed from the Taylor 

series expansion. This alternative derivation is useful in that it also 

provides insight into the rate of convergence of the method.

 Recall from Chap. 4 that the Taylor series expansion can be 

represented as

f (xi11) 5 f (xi) 1 f ¿(xi) (xi11 2 xi)

     1
f –(j)

2!
 (xi11 2 xi)

2 (B6.2.1)

where j lies somewhere in the interval from xi to xi11. An approxi-

mate version is obtainable by truncating the series after the i rst 

derivative term:

f (xi11) >  f (xi) 1 f ¿(xi) (xi11 2 xi)

At the intersection with the x axis, f(xi11) would be equal to 

zero, or

0 5 f (xi) 1 f ¿(xi) (xi11 2 xi) (B6.2.2)

which can be solved for

xi11 5 xi 2
f (xi)

f ¿(xi)

which is identical to Eq. (6.6). Thus, we have derived the Newton-

Raphson formula using a Taylor series.

 Aside from the derivation, the Taylor series can also be used to 

estimate the error of the formula. This can be done by realizing that 

if the complete Taylor series were employed, an exact result would 

be obtained. For this situation xi11 5 xr, where x is the true value 

of the root. Substituting this value along with f(xr) 5 0 into 

Eq. (B6.2.1) yields

0 5 f (xi) 1 f ¿(xi) (xr 2 xi) 1
f –(j)

2!
 (xr 2 xi)

2 (B6.2.3)

Equation (B6.2.2) can be subtracted from Eq. (B6.2.3) to give

0 5 f ¿(xi) (xr 2 xi11) 1
f –(j)

2!
(xr 2 xi)

2 (B6.2.4)

Now, realize that the error is equal to the discrepancy between xi11 

and the true value xr, as in

Et,i11 5 xr 2 xi11

and Eq. (B6.2.4) can be expressed as

0 5 f ¿(xi)Et,i11 1
f –(j)

2!
 E2

t,i (B6.2.5)

If we assume convergence, both xi and j should eventually be ap-

proximated by the root xr, and Eq. (B6.2.5) can be rearranged to yield

Et,i11 5
2f –(xr)

2 f ¿(xr)
 E2

t,i (B6.2.6)

According to Eq. (B6.2.6), the error is roughly proportional to the 

square of the previous error. This means that the number of correct 

decimal places approximately doubles with each iteration. Such 

behavior is referred to as quadratic convergence. Example 6.4 

manifests this property.
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which can be evaluated at xr 5 0.56714329 as f 9(0.56714329) 5 21.56714329. The 

second derivative is

f –(x) 5 e2x

which can be evaluated as f 0(0.56714329) 5 0.56714329. These results can be  substituted 

into Eq. (E6.4.1) to yield

Et,i11 > 2
0.56714329

2(21.56714329)
 E2

t,i 5 0.18095E2
t,i

From Example 6.3, the initial error was Et,0 5 0.56714329, which can be substituted 

into the error equation to predict

Et,1 > 0.18095(0.56714329)2
5 0.0582

which is close to the true error of 0.06714329. For the next iteration,

Et,2 > 0.18095(0.06714329)2
5 0.0008158

which also compares favorably with the true error of 0.0008323. For the third iteration,

Et,3 > 0.18095(0.0008323)2
5 0.000000125

which is the error obtained in Example 6.3. The error estimate improves in this manner 

because, as we come closer to the root, x and j are better approximated by xr [recall our 

assumption in going from Eq. (B6.2.5) to Eq. (B6.2.6) in Box 6.2]. Finally,

Et,4 > 0.18095(0.000000125)2
5 2.83 3 10215

Thus, this example illustrates that the error of the Newton-Raphson method for this case 

is, in fact, roughly proportional (by a factor of 0.18095) to the square of the error of the 

previous iteration.

6.2.2 Pitfalls of the Newton-Raphson Method

Although the Newton-Raphson method is often very efi cient, there are situations where 

it performs poorly. A special case—multiple roots—will be addressed later in this chapter. 

However, even when dealing with simple roots, difi culties can also arise, as in the fol-

lowing example.

 EXAMPLE 6.5 Example of a Slowly Converging Function with Newton-Raphson

Problem Statement. Determine the positive root of f(x) 5 x10 2 1 using the Newton-

Raphson method and an initial guess of x 5 0.5.

Solution. The Newton-Raphson formula for this case is

xi11 5 xi 2
x10

i 2 1

10x9
i

which can be used to compute
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Aside from slow convergence due to the nature of the function, other difi culties 

can arise, as illustrated in Fig. 6.6. For example, Fig. 6.6a depicts the case where 

an inl ection point [that is, f 0(x) 5 0] occurs in the vicinity of a root. Notice that 

iterations beginning at x0 progressively diverge from the root. Figure 6.6b illustrates 

the tendency of the Newton-Raphson technique to oscillate around a local maximum 

or minimum. Such oscillations may persist, or as in Fig. 6.6b, a near-zero slope is 

reached, whereupon the solution is sent far from the area of interest. Figure 6.6c 

shows how an initial guess that is close to one root can jump to a location several 

roots away. This tendency to move away from the area of interest is because near-

zero slopes are encountered. Obviously, a zero slope [ f 9(x) 5 0] is truly a disaster 

because it causes division by zero in the Newton-Raphson formula [Eq. (6.6)]. 

Graphically (see Fig 6.6d), it means that the solution shoots off horizontally and 

never hits the x axis.

Thus, there is no general convergence criterion for Newton-Raphson. Its convergence 

depends on the nature of the function and on the accuracy of the initial guess. The only 

remedy is to have an initial guess that is “sufi ciently” close to the root. And for some 

functions, no guess will work! Good guesses are usually predicated on knowledge of the 

physical problem setting or on devices such as graphs that provide insight into the be-

havior of the solution. The lack of a general convergence criterion also suggests that 

good computer software should be designed to recognize slow convergence or diver-

gence. The next section addresses some of these issues.

Iteration x

 0 0.5
 1 51.65
 2 46.485
 3 41.8365
 4 37.65285
 5 33.887565
 .
 .
 .
 ` 1.0000000

Thus, after the i rst poor prediction, the technique is converging on the true root of 1, 

but at a very slow rate.

[49]
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