6.2 THE NEWTON-RAPHSON METHOD

Perhaps the most widely used of all root-locating formulas is the Newton-Raphson equation (Fig. 6.5). If the initial guess at the root is x_{i}, a tangent can be extended from the point $\left[x_{i}, f\left(x_{i}\right)\right]$. The point where this tangent crosses the x axis usually represents an improved estimate of the root.

The Newton-Raphson method can be derived on the basis of this geometrical interpretation (an alternative method based on the Taylor series is described in Box 6.2). As in Fig. 6.5, the first derivative at x is equivalent to the slope:

$$
\begin{equation*}
f^{\prime}\left(x_{i}\right)=\frac{f\left(x_{i}\right)-0}{x_{i}-x_{i+1}} \tag{6.5}
\end{equation*}
$$

which can be rearranged to yield

$$
\begin{equation*}
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)} \tag{6.6}
\end{equation*}
$$

which is called the Newton-Raphson formula.

EXAMPLE 6.3 Newton-Raphson Method

Problem Statement. Use the Newton-Raphson method to estimate the root of $f(x)=$ $e^{-x}-x$, employing an initial guess of $x_{0}=0$.
Solution. The first derivative of the function can be evaluated as

$$
f^{\prime}(x)=-e^{-x}-1
$$

which can be substituted along with the original function into Eq. (6.6) to give

$$
x_{i+1}=x_{i}-\frac{e^{-x_{i}}-x_{i}}{-e^{-x_{i}}-1}
$$

Starting with an initial guess of $x_{0}=0$, this iterative equation can be applied to compute

\boldsymbol{i}	$\boldsymbol{x}_{\boldsymbol{i}}$	$\boldsymbol{\varepsilon}_{\boldsymbol{f}}(\%)$
0	0	100
1	0.500000000	11.8
2	0.566311003	0.147
3	0.567143165	0.0000220
4	0.567143290	$<10^{-8}$

Thus, the approach rapidly converges on the true root. Notice that the true percent relative error at each iteration decreases much faster than it does in simple fixed-point iteration (compare with Example 6.1).

6.2.1 Termination Criteria and Error Estimates

As with other root-location methods, Eq. (3.5) can be used as a termination criterion. In addition, however, the Taylor series derivation of the method (Box 6.2) provides theoretical insight regarding the rate of convergence as expressed by $E_{i+1}=O\left(E_{i}^{2}\right)$. Thus the error should be roughly proportional to the square of the previous error. In other words,

Box 6.2 Derivation and Error Analysis of the Newton-Raphson Method

Aside from the geometric derivation [Eqs. (6.5) and (6.6)], the Newton-Raphson method may also be developed from the Taylor series expansion. This alternative derivation is useful in that it also provides insight into the rate of convergence of the method.

Recall from Chap. 4 that the Taylor series expansion can be represented as

$$
\begin{align*}
f\left(x_{i+1}\right)= & f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)\left(x_{i+1}-x_{i}\right) \\
& +\frac{f^{\prime \prime}(\xi)}{2!}\left(x_{i+1}-x_{i}\right)^{2} \tag{B6.2.1}
\end{align*}
$$

where ξ lies somewhere in the interval from x_{i} to x_{i+1}. An approximate version is obtainable by truncating the series after the first derivative term:

$$
f\left(x_{i+1}\right) \cong f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)\left(x_{i+1}-x_{i}\right)
$$

At the intersection with the x axis, $f\left(x_{i+1}\right)$ would be equal to zero, or

$$
\begin{equation*}
0=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)\left(x_{i+1}-x_{i}\right) \tag{B6.2.2}
\end{equation*}
$$

which can be solved for

$$
x_{i+1}=x_{i}-\frac{f\left(x_{i}\right)}{f^{\prime}\left(x_{i}\right)}
$$

which is identical to Eq. (6.6). Thus, we have derived the NewtonRaphson formula using a Taylor series.

Aside from the derivation, the Taylor series can also be used to estimate the error of the formula. This can be done by realizing that if the complete Taylor series were employed, an exact result would
be obtained. For this situation $x_{i+1}=x_{r}$, where x is the true value of the root. Substituting this value along with $f\left(x_{r}\right)=0$ into Eq. (B6.2.1) yields

$$
\begin{equation*}
0=f\left(x_{i}\right)+f^{\prime}\left(x_{i}\right)\left(x_{r}-x_{i}\right)+\frac{f^{\prime \prime}(\xi)}{2!}\left(x_{r}-x_{i}\right)^{2} \tag{B6.2.3}
\end{equation*}
$$

Equation (B6.2.2) can be subtracted from Eq. (B6.2.3) to give

$$
\begin{equation*}
0=f^{\prime}\left(x_{i}\right)\left(x_{r}-x_{i+1}\right)+\frac{f^{\prime \prime}(\xi)}{2!}\left(x_{r}-x_{i}\right)^{2} \tag{B6.2.4}
\end{equation*}
$$

Now, realize that the error is equal to the discrepancy between x_{i+1} and the true value x_{r}, as in

$$
E_{t, i+1}=x_{r}-x_{i+1}
$$

and Eq. (B6.2.4) can be expressed as

$$
\begin{equation*}
0=f^{\prime}\left(x_{i}\right) E_{t, i+1}+\frac{f^{\prime \prime}(\xi)}{2!} E_{t, i}^{2} \tag{B6.2.5}
\end{equation*}
$$

If we assume convergence, both x_{i} and ξ should eventually be approximated by the root x_{r}, and Eq. (B6.2.5) can be rearranged to yield

$$
\begin{equation*}
E_{t, i+1}=\frac{-f^{\prime \prime}\left(x_{r}\right)}{2 f^{\prime}\left(x_{r}\right)} E_{t, i}^{2} \tag{B6.2.6}
\end{equation*}
$$

According to Eq. (B6.2.6), the error is roughly proportional to the square of the previous error. This means that the number of correct decimal places approximately doubles with each iteration. Such behavior is referred to as quadratic convergence. Example 6.4 manifests this property.
the number of significant figures of accuracy approximately doubles with each iteration. This behavior is examined in the following example.

EXAMPLE 6.4 Error Analysis of Newton-Raphson Method

Problem Statement. As derived in Box 6.2, the Newton-Raphson method is quadratically convergent. That is, the error is roughly proportional to the square of the previous error, as in

$$
\begin{equation*}
E_{t, i+1} \cong \frac{-f^{\prime \prime}\left(x_{r}\right)}{2 f^{\prime}\left(x_{r}\right)} E_{t, i}^{2} \tag{E6.4.1}
\end{equation*}
$$

Examine this formula and see if it applies to the results of Example 6.3.
Solution. The first derivative of $f(x)=e^{-x}-x$ is

$$
f^{\prime}(x)=-e^{-x}-1
$$

which can be evaluated at $x_{r}=0.56714329$ as $f^{\prime}(0.56714329)=-1.56714329$. The second derivative is

$$
f^{\prime \prime}(x)=e^{-x}
$$

which can be evaluated as $f^{\prime \prime}(0.56714329)=0.56714329$. These results can be substituted into Eq. (E6.4.1) to yield

$$
E_{t, i+1} \cong-\frac{0.56714329}{2(-1.56714329)} E_{t, i}^{2}=0.18095 E_{t, i}^{2}
$$

From Example 6.3, the initial error was $E_{t, 0}=0.56714329$, which can be substituted into the error equation to predict

$$
E_{t, 1} \cong 0.18095(0.56714329)^{2}=0.0582
$$

which is close to the true error of 0.06714329 . For the next iteration,

$$
E_{t, 2} \cong 0.18095(0.06714329)^{2}=0.0008158
$$

which also compares favorably with the true error of 0.0008323 . For the third iteration,

$$
E_{t, 3} \cong 0.18095(0.0008323)^{2}=0.000000125
$$

which is the error obtained in Example 6.3. The error estimate improves in this manner because, as we come closer to the root, x and ξ are better approximated by x_{r} [recall our assumption in going from Eq. (B6.2.5) to Eq. (B6.2.6) in Box 6.2]. Finally,

$$
E_{t, 4} \cong 0.18095(0.000000125)^{2}=2.83 \times 10^{-15}
$$

Thus, this example illustrates that the error of the Newton-Raphson method for this case is, in fact, roughly proportional (by a factor of 0.18095) to the square of the error of the previous iteration.

6.2.2 Pitfalls of the Newton-Raphson Method

Although the Newton-Raphson method is often very efficient, there are situations where it performs poorly. A special case-multiple roots-will be addressed later in this chapter. However, even when dealing with simple roots, difficulties can also arise, as in the following example.

EXAMPLE 6.5 Example of a Slowly Converging Function with Newton-Raphson

Problem Statement. Determine the positive root of $f(x)=x^{10}-1$ using the NewtonRaphson method and an initial guess of $x=0.5$.

Solution. The Newton-Raphson formula for this case is

$$
x_{i+1}=x_{i}-\frac{x_{i}^{10}-1}{10 x_{i}^{9}}
$$

which can be used to compute

Iteration	\boldsymbol{x}
0	0.5
1	51.65
2	46.485
3	41.8365
4	37.65285
5	33.887565
0	
∞	1.0000000

Thus, after the first poor prediction, the technique is converging on the true root of 1 , but at a very slow rate.

Aside from slow convergence due to the nature of the function, other difficulties can arise, as illustrated in Fig. 6.6. For example, Fig. 6.6a depicts the case where an inflection point [that is, $f^{\prime \prime}(x)=0$] occurs in the vicinity of a root. Notice that iterations beginning at x_{0} progressively diverge from the root. Figure $6.6 b$ illustrates the tendency of the Newton-Raphson technique to oscillate around a local maximum or minimum. Such oscillations may persist, or as in Fig. 6.6b, a near-zero slope is reached, whereupon the solution is sent far from the area of interest. Figure $6.6 c$ shows how an initial guess that is close to one root can jump to a location several roots away. This tendency to move away from the area of interest is because nearzero slopes are encountered. Obviously, a zero slope $\left[f^{\prime}(x)=0\right.$] is truly a disaster because it causes division by zero in the Newton-Raphson formula [Eq. (6.6)]. Graphically (see Fig 6.6d), it means that the solution shoots off horizontally and never hits the x axis.

Thus, there is no general convergence criterion for Newton-Raphson. Its convergence depends on the nature of the function and on the accuracy of the initial guess. The only remedy is to have an initial guess that is "sufficiently" close to the root. And for some functions, no guess will work! Good guesses are usually predicated on knowledge of the physical problem setting or on devices such as graphs that provide insight into the behavior of the solution. The lack of a general convergence criterion also suggests that good computer software should be designed to recognize slow convergence or divergence. The next section addresses some of these issues.

