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Least-Squares Regression

Where substantial error is associated with data, polynomial interpolation is inappropriate 

and may yield unsatisfactory results when used to predict intermediate values. Experi-

mental data are often of this type. For example, Fig. 17.1a shows seven experimentally 

derived data points exhibiting signii cant variability. Visual inspection of these data sug-

gests a positive relationship between y and x. That is, the overall trend indicates that 

higher values of y are associated with higher values of x. Now, if a sixth-order interpo-

lating polynomial is i tted to these data (Fig. 17.1b), it will pass exactly through all of 

the points. However, because of the variability in these data, the curve oscillates widely 

in the interval between the points. In particular, the interpolated values at x 5 1.5 and 

x 5 6.5 appear to be well beyond the range suggested by these data.

A more appropriate strategy for such cases is to derive an approximating function 

that i ts the shape or general trend of the data without necessarily matching the indi-

vidual points. Figure 17.1c illustrates how a straight line can be used to generally char-

acterize the trend of these data without passing through any particular point.

One way to determine the line in Fig. 17.1c is to visually inspect the plotted data 

and then sketch a “best” line through the points. Although such “eyeball” approaches 

have commonsense appeal and are valid for “back-of-the-envelope” calculations, they are 

dei cient because they are arbitrary. That is, unless the points dei ne a perfect straight 

line (in which case, interpolation would be appropriate), different analysts would draw 

different lines.

To remove this subjectivity, some criterion must be devised to establish a basis for 

the i t. One way to do this is to derive a curve that minimizes the discrepancy between 

the data points and the curve. A technique for accomplishing this objective, called least-

squares regression, will be discussed in the present chapter.

17.1 LINEAR REGRESSION

The simplest example of a least-squares approximation is i tting a straight line to a set 

of paired observations: (x1, y1), (x2, y2), . . . , (xn, yn). The mathematical expression for 

the straight line is

y 5 a0 1 a1x 1 e (17.1)

[80]
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where a0 and a1 are coefi cients representing the intercept and the slope, respectively, 

and e is the error, or residual, between the model and the observations, which can be 

represented by rearranging Eq. (17.1) as

e 5 y 2 a0 2 a1x

Thus, the error, or residual, is the discrepancy between the true value of y and the ap-

proximate value, a0 1 a1x, predicted by the linear equation.

y

x

(a)

5

50
0

y

x

(b)

5

50
0

y

x

(c)

5

50
0

FIGURE 17.1
(a) Data exhibiting signifi cant 
error. (b) Polynomial fi t 
 oscillating beyond the range of 
the data. (c) More satisfactory 
result using the least-squares fi t.
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458 LEAST-SQUARES REGRESSION

17.1.1 Criteria for a “Best” Fit

One strategy for i tting a “best” line through the data would be to minimize the sum of 

the residual errors for all the available data, as in

a
n

i51

ei 5 a
n

i51

(yi 2 a0 2 a1 xi) (17.2)

where n 5 total number of points. However, this is an inadequate criterion, as illustrated 

by Fig. 17.2a which depicts the i t of a straight line to two points. Obviously, the best 

FIGURE 17.2
Examples of some criteria for “best fi t” that are inadequate for regression: (a) minimizes the sum 
of the residuals, (b) minimizes the sum of the absolute values of the residuals, and (c) minimizes 
the maximum error of any individual point.
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i t is the line connecting the points. However, any straight line passing through the mid-

point of the connecting line (except a perfectly vertical line) results in a minimum value 

of Eq. (17.2) equal to zero because the errors cancel.

 Therefore, another logical criterion might be to minimize the sum of the absolute 

values of the discrepancies, as in

a
n

i51

Zei Z 5 a
n

i51

Zyi 2 a0 2 a1xi Z

Figure 17.2b demonstrates why this criterion is also inadequate. For the four points 

shown, any straight line falling within the dashed lines will minimize the sum of the 

absolute values. Thus, this criterion also does not yield a unique best i t.

 A third strategy for fitting a best line is the minimax criterion. In this technique, 

the line is chosen that minimizes the maximum distance that an individual point 

falls from the line. As depicted in Fig. 17.2c, this strategy is ill-suited for regres-

sion because it gives undue influence to an outlier, that is, a single point with a 

large error. It should be noted that the minimax principle is sometimes well-suited 

for fitting a simple function to a complicated function (Carnahan, Luther, and 

Wilkes, 1969).

 A strategy that overcomes the shortcomings of the aforementioned approaches is to 

minimize the sum of the squares of the residuals between the measured y and the y 

calculated with the linear model

Sr 5 a
n

i51

e2
i 5a

n

i51

(yi, measured 2 yi, model)
2

5a
n

i51

(yi 2 a0 2 a1xi)
2 (17.3)

This criterion has a number of advantages, including the fact that it yields a unique line 

for a given set of data. Before discussing these properties, we will present a technique 

for determining the values of a0 and a1 that minimize Eq. (17.3).

17.1.2 Least-Squares Fit of a Straight Line

To determine values for a0 and a1, Eq. (17.3) is differentiated with respect to each coef-

i cient:

0Sr

0a0

5 22a (yi 2 a0 2 a1xi)

0Sr

0a1

5 22a [(yi 2 a0 2 a1xi)xi]

Note that we have simplii ed the summation symbols; unless otherwise indicated, all 

summations are from i 5 1 to n. Setting these derivatives equal to zero will result in a 

minimum Sr. If this is done, the equations can be expressed as

0 5 a yi 2 a a0 2 a a1xi

0 5 a yi xi 2 a a0 xi 2 a a1x
2
i

[83]



460 LEAST-SQUARES REGRESSION

Now, realizing that Sa0 5 na0, we can express the equations as a set of two simultane-

ous linear equations with two unknowns (a0 and a1):

na0 1 (a xi)a1 5 a yi (17.4)

(a xi)a0 1 (a x2
i )a1 5 a xi yi (17.5)

These are called the normal equations. They can be solved simultaneously

a1 5
no  xi yi 2 o xi o yi

no  x2
i 2 (o xi)

2
 (17.6)

This result can then be used in conjunction with Eq. (17.4) to solve for

a0 5 y 2 a1x (17.7)

where y and x are the means of y and x, respectively.

 EXAMPLE 17.1 Linear Regression

Problem Statement. Fit a straight line to the x and y values in the i rst two columns 

of Table 17.1.

Solution. The following quantities can be computed:

n 5 7  a xi yi 5 119.5  a x2
i 5 140

a xi 5 28  x 5
28

7
5 4

a yi 5 24  y 5
24

7
5 3.428571

Using Eqs. (17.6) and (17.7),

a1 5
7(119.5) 2 28(24)

7(140) 2 (28)2
5 0.8392857

a0 5 3.428571 2 0.8392857(4) 5 0.07142857

TABLE 17.1 Computations for an error analysis of the linear fi t.

xi yi (yi 2 y ) (yi 2 a0 2 a1xi )2

1 0.5 8.5765 0.1687
2 2.5 0.8622 0.5625
3 2.0 2.0408 0.3473
4 4.0 0.3265 0.3265
5 3.5 0.0051 0.5896
6 6.0 6.6122 0.7972
7  5.5  4.2908 0.1993
S 24.0 22.7143 2.9911

[84]



 17.1 LINEAR REGRESSION 461

17.1.3 Quantifi cation of Error of Linear Regression

Any line other than the one computed in Example 17.1 results in a larger sum of the 

squares of the residuals. Thus, the line is unique and in terms of our chosen criterion is 

a “best” line through the points. A number of additional properties of this i t can be 

elucidated by examining more closely the way in which residuals were computed. Recall 

that the sum of the squares is dei ned as [Eq. (17.3)]

Sr 5 a
n

i51
 e

2
i 5 a

n

i51

(yi 2 a0 2 a1xi)
2 (17.8)

 Notice the similarity between Eqs. (PT5.3) and (17.8). In the former case, the square 

of the residual represented the square of the discrepancy between the data and a single 

estimate of the measure of central tendency—the mean. In Eq. (17.8), the square of the 

residual represents the square of the vertical distance between the data and another mea-

sure of central tendency—the straight line (Fig. 17.3).

 The analogy can be extended further for cases where (1) the spread of the points 

around the line is of similar magnitude along the entire range of the data and (2) the 

distribution of these points about the line is normal. It can be demonstrated that if these 

criteria are met, least-squares regression will provide the best (that is, the most likely) 

estimates of a0 and a1 (Draper and Smith, 1981). This is called the maximum likelihood 

Therefore, the least-squares i t is

y 5 0.07142857 1 0.8392857x

The line, along with the data, is shown in Fig. 17.1c.

FIGURE 17.3
The residual in linear regression represents the vertical distance between a data point and the 
straight line.
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462 LEAST-SQUARES REGRESSION

principle in statistics. In addition, if these criteria are met, a “standard deviation” for the 

regression line can be determined as [compare with Eq. (PT5.2)]

syyx 5 A
Sr

n 2 2
 (17.9)

where syyx is called the standard error of the estimate. The subscript notation “yyx” desig-

nates that the error is for a predicted value of y corresponding to a particular value of x. 

Also, notice that we now divide by n 2 2 because two data-derived estimates—a0 and 

a1—were used to compute Sr; thus, we have lost two degrees of freedom. As with our 

discussion of the standard deviation in PT5.2.1, another justii cation for dividing by n 2 2 

is that there is no such thing as the “spread of data” around a straight line connecting two 

points. Thus, for the case where n 5 2, Eq. (17.9) yields a meaningless result of ini nity.

 Just as was the case with the standard deviation, the standard error of the estimate 

quantii es the spread of the data. However, sy/x quantii es the spread around the regression 

line as shown in Fig. 17.4b in contrast to the original standard deviation sy that quantii ed 

the spread around the mean (Fig. 17.4a).

 The above concepts can be used to quantify the “goodness” of our i t. This is par-

ticularly useful for comparison of several regressions (Fig. 17.5). To do this, we return 

to the original data and determine the total sum of the squares around the mean for the 

dependent variable (in our case, y). As was the case for Eq. (PT5.3), this quantity is 

designated St. This is the magnitude of the residual error associated with the dependent 

variable prior to regression. After performing the regression, we can compute Sr, the sum 

of the squares of the residuals around the regression line. This characterizes the residual 

error that remains after the regression. It is, therefore, sometimes called the unexplained 

FIGURE 17.4
Regression data showing (a) the spread of the data around the mean of the dependent variable 
and (b) the spread of the data around the best-fi t line. The reduction in the spread in going from 
(a) to (b), as indicated by the bell-shaped curves at the right, represents the improvement due to 
linear regression.

(a) (b)

[86]



17.1 LINEAR REGRESSION 463

y

x

(a)

y

x

(b)

FIGURE 17.5
Examples of linear regression with (a) small and (b) large residual errors.

EXAMPLE 17.2 Estimation of Errors for the Linear Least-Squares Fit

Problem Statement. Compute the total standard deviation, the standard error of the

estimate, and the correlation coefi cient for the data in Example 17.1.

Solution. The summations are performed and presented in Table 17.1. The standard

deviation is [Eq. (PT5.2)]

22.7143
sy 5 5 1.9457A 7 2 1

and the standard error of the estimate is [Eq. (17.9)]

syyx 5 A
2.9911

7 2 2
5 0.7735
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468 LEAST-SQUARES REGRESSION

17.1.5 Linearization of Nonlinear Relationships

Linear regression provides a powerful technique for i tting a best line to data. However, 

it is predicated on the fact that the relationship between the dependent and independent 

variables is linear. This is not always the case, and the i rst step in any regression 

analysis should be to plot and visually inspect the data to ascertain whether a linear 

model applies. For example, Fig. 17.8 shows some data that is obviously curvilinear. In 

some cases, techniques such as polynomial regression, which is described in Sec. 17.2, 

are appropriate. For others, transformations can be used to express the data in a form 

that is compatible with linear regression.

FIGURE 17.8
(a) Data that are ill-suited for linear least-squares regression. (b) Indication that a parabola is 
 preferable.
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 One example is the exponential model

y 5 a1e
b1x (17.12)

where a1 and b1 are constants. This model is used in many i elds of engineering to 

characterize quantities that increase (positive b1) or decrease (negative b1) at a rate that 

is directly proportional to their own magnitude. For example, population growth or ra-

dioactive decay can exhibit such behavior. As depicted in Fig. 17.9a, the equation rep-

resents a nonlinear relationship (for b1 ? 0) between y and x.

 Another example of a nonlinear model is the simple power equation

y 5 a2xb2 (17.13)

FIGURE 17.9
(a) The exponential equation, (b) the power equation, and (c) the saturation-growth-rate 
equation. Parts (d ), (e), and (f ) are linearized versions of these equations that result 
from simple transformations.
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where a2 and b2 are constant coefi cients. This model has wide applicability in all i elds 

of engineering. As depicted in Fig. 17.9b, the equation (for b2 ? 0 or 1) is nonlinear.

 A third example of a nonlinear model is the saturation-growth-rate equation [recall 

Eq. (E17.3.1)]

y 5 a3 

x

b3 1 x
 (17.14)

where a3 and b3 are constant coefi cients. This model, which is particularly well-suited for 

characterizing population growth rate under limiting conditions, also represents a nonlinear 

relationship between y and x (Fig. 17.9c) that levels off, or “saturates,” as x increases.

 Nonlinear regression techniques are available to i t these equations to experimental 

data directly. (Note that we will discuss nonlinear regression in Sec. 17.5.) However, a 

simpler alternative is to use mathematical manipulations to transform the equations into 

a linear form. Then, simple linear regression can be employed to i t the equations to data.

 For example, Eq. (17.12) can be linearized by taking its natural logarithm to yield

ln y 5 ln a1 1 b1x ln e

But because ln e 5 1,

ln y 5 ln a1 1 b1x (17.15)

Thus, a plot of ln y versus x will yield a straight line with a slope of b1 and an intercept 

of ln a1 (Fig. 17.9d).

 Equation (17.13) is linearized by taking its base-10 logarithm to give

log y 5 b2 log x 1 log a2 (17.16)

Thus, a plot of log y versus log x will yield a straight line with a slope of b2 and an 

intercept of log a2 (Fig. 17.9e).

 Equation (17.14) is linearized by inverting it to give

1

y
5
b3

a3

 
1

x
1

1

a3

 (17.17)

Thus, a plot of 1Yy versus lYx will be linear, with a slope of b3Ya3 and an intercept of 

1Ya3 (Fig. 17.9f ).

 In their transformed forms, these models can use linear regression to evaluate the 

constant coefi cients. They could then be transformed back to their original state and 

used for predictive purposes. Example 17.4 illustrates this procedure for Eq. (17.13). In 

addition, Sec. 20.1 provides an engineering example of the same sort of computation.

 EXAMPLE 17.4 Linearization of a Power Equation

Problem Statement. Fit Eq. (17.13) to the data in Table 17.3 using a logarithmic 

transformation of the data.

Solution. Figure 17.10a is a plot of the original data in its untransformed state. Figure 

17.10b shows the plot of the transformed data. A linear regression of the log-transformed 

data yields the result

log y 5 1.75 log x 2 0.300

[90]
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TABLE 17.3 Data to be fi t to the power equation.

x y log x log y

1 0.5 0 20.301
2 1.7 0.301 0.226
3 3.4 0.477 0.534
4 5.7 0.602 0.753
5 8.4 0.699 0.922

FIGURE 17.10
(a) Plot of untransformed data with the power equation that fi ts these data. (b) Plot of transformed 
data used to determine the coeffi cients of the power equation.
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