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Numerical Differentiation

4.1.3 Numerical Differentiation

Equation (4.14) is given a formal label in numerical methods—it is called a finite divided
difference. It can be represented generally as

flx) = Fe) 2D | e — (4.17)
Xit1 = X
or
Af;
) = Y + O(h) (4.18)

where A f; is referred to as the first forward difference and h is called the step size, that
is, the length of the interval over which the approximation is made. It is termed a “forward”
difference because it utilizes data at i and i + 1 to estimate the derivative (Fig. 4.6a). The
entire term A f/h is referred to as a first finite divided difference.

This forward divided difference is but one of many that can be developed from the
Taylor series to approximate derivatives numerically. For example, backward and centered
difference approximations of the first derivative can be developed in a fashion similar to
the derivation of Eq. (4.14). The former utilizes values at x;_; and x; (Fig. 4.6b), whereas
the latter uses values that are equally spaced around the point at which the derivative is
estimated (Fig. 4.6¢). More accurate approximations of the first derivative can be devel-
oped by including higher-order terms of the Taylor series. Finally, all the above versions
can also be developed for second, third, and higher derivatives. The following sections
provide brief summaries illustrating how some of these cases are derived.

Backward Difference Approximation of the First Derivative. The Taylor series can
be expanded backward to calculate a previous value on the basis of a present value, as in

£e)

SOz = fa) = feh + = (4.19)
Truncating this equation after the first derivative and rearranging yields
Xi) — J(Xi— \Y i
iy =18~ S0 Vi (4.20)

h h

where the error is O(h), and V f; is referred to as the first backward difference. See Fig. 4.6
for a graphical representation.
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FIGURE 4.6
Graphical depiction of (a) forward, (b) backward, and (c) centered finite-divided-difference
approximations of the first derivative.
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EXAMPLE 4.4

Centered Difference Approximation of the First Derivative. A third way to approxi-
mate the first derivative is to subtract Eq. (4.19) from the forward Taylor series expansion:

fiv) = f(x) + f'(x)h +f;’) . 4.21)
to yield
f®<)
fxis) = fi-) + 2f(xeph + —— 3

which can be solved for

fGie) = [ UG
2h 6

') =

or

Sxi) = fxiop)

_ 2
" o(h?) 4.22)

f(l)_

Equation (4.22) is a centered difference representation of the first derivative. Notice that
the truncation error is of the order of 4* in contrast to the forward and backward
approximations that were of the order of h. Consequently, the Taylor series analysis
yields the practical information that the centered difference is a more accurate represen-
tation of the derivative (Fig. 4.6¢). For example, if we halve the step size using a forward
or backward difference, we would approximately halve the truncation error, whereas for
the central difference, the error would be quartered.

Finite-Divided-Difference Approximations of Derivatives

Problem Statement. Use forward and backward difference approximations of O(h) and
a centered difference approximation of O(h?) to estimate the first derivative of

f(x) = —0.1x* — 0.15x° — 0.5 — 0.25x + 1.25

at x = 0.5 using a step size 7 = 0.5. Repeat the computation using # = 0.25. Note that
the derivative can be calculated directly as

fi(x) = —0.4x° — 0.45x> — 1.0x — 0.25
and can be used to compute the true value as f'(0.5) = —0.9125.

Solution.  For h = 0.5, the function can be employed to determine
Xi-1 =0 Sxim) = 1.2
xi =05 f(xp) =0925
=10 f(x;+;) =02
These values can be used to compute the forward divided difference [Eq. (4.17)],

0.2 — 0.925
FO5) =2 =~ 145 g = 589%

Xi+1
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the backward divided difference [Eq. (4.20)],

0925 — 1.2
f(05)=———"——=-055 le| = 39.7%
0.5
and the centered divided difference [Eq. (4.22)],
02—-1.2
f(0.5) = 1o = —-1.0 le] = 9.6%
For h = 0.25,

Xy =025  f(x_,) = 1.10351563
x;, =05 fx) = 0925
Xep =075 f(x+)) = 0.63632813

which can be used to compute the forward divided difference,

0.63632813 — 0.925
0.25

1'0.5) = —1.155  |&| = 26.5%

the backward divided difference,

0.925 — 1.10351563
£1(0.5) = 035 = 0714  |g|=217%

and the centered divided difference,

0.63632813 — 1.10351563
03 = 0934 |g|=24%

f0.5) =

For both step sizes, the centered difference approximation is more accurate than
forward or backward differences. Also, as predicted by the Taylor series analysis, halving
the step size approximately halves the error of the backward and forward differences and
quarters the error of the centered difference.
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CHAPTER23

23.1

Numerical Differentiation

We have already introduced the notion of numerical differentiation in Chap. 4. Recall
that we employed Taylor series expansions to derive finite-divided-difference approxima-
tions of derivatives. In Chap. 4, we developed forward, backward, and centered difference
approximations of first and higher derivatives. Recall that, at best, these estimates had
errors that were O(h*)—that is, their errors were proportional to the square of the step
size. This level of accuracy is due to the number of terms of the Taylor series that were
retained during the derivation of these formulas. We will now illustrate how to develop
more accurate formulas by retaining more terms.

HIGH-ACCURACY DIFFERENTIATION FORMULAS

As noted above, high-accuracy divided-difference formulas can be generated by includ-
ing additional terms from the Taylor series expansion. For example, the forward Taylor
series expansion can be written as [Eq. (4.21)]

fQiv) = f(x) + f'(x)h + %hz + - (23.1)
which can be solved for
F(x) :f(le) = f(x) _f (xi)h 4 O(hz) 232)

h 2

In Chap. 4, we truncated this result by excluding the second- and higher-derivative
terms and were thus left with a final result of
X; - X;
Flx) = W + 0h) (233)
In contrast to this approach, we now retain the second-derivative term by substitut-
ing the following approximation of the second derivative [recall Eq. (4.24)]
_ Sxiv2) = 2f(xi 1) + f(x)

S = 7 + O(h) (23.4)

655
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into Eq. (23.2) to yield
_ S = f(x) _ Si2) = 2f(xi1) + f(x)

10+ + 2
fx) p ™ h+ O(1)
or, by collecting terms,
_ X + 4 . — 13 .
f'(x,») _ f(xz+2) f(‘xl+1) f(xl) + O(hz) (235)

2h

Notice that inclusion of the second-derivative term has improved the accuracy to
O(h?). Similar improved versions can be developed for the backward and centered for-
mulas as well as for the approximations of the higher derivatives. The formulas are
summarized in Figs. 23.1 through 23.3 along with all the results from Chap. 4. The
following example illustrates the utility of these formulas for estimating derivatives.

FIGURE 23.1

Forward finite-divided-difference formulas: two versions are presented for each derivative. The
latter version incorporates more terms of the Taylor series expansion and is, consequently, more
accurate.

First Derivative Error
Fix) = M Othl

h
f’(x,] _ _’((X/+2) + A;(:M) - 3)[(ij O(hz)

Second Derivative

fixira) = 2fxi1) + fix)

frlx) = - Olh)
Fix) = —fxii3) + 4?[(X,+2L2— Sflxy ) + 2f(x) o
Third Derivative
f”’(x,] _ f(X;ﬂ' - Sf(XHQ)h:' Sf(X,‘H) - ?((X,) O(h]
Frix) = —3fxia) + 140X 5) — 24fx5) + 18f(xi4 1] — 5f(x) o)
2K
Fourth Derivative
f/m(xl) _ '((prA) - 47[(><r+3) + é;ljwzj - Af(XHW) + f(Xf' O(h]
i) = =2fx1 5] + 11 Hxia) — 24f(x5) + 26f(x45) — 14f(x1] + 3f(x)] o

hA
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First Derivative Error
Vi
Flx) = M Ot
f) = 3flx) — 41[(;-71) + flx o) o)
Second Derivative
fix) — 2f(x_ fxi_
’["(Xi) _ (Xr) (X};QW' + (Xr 2] O'/’J)
frlx) = 2f(x) — Sflx1) ‘/’7'247((&—2) = flx ) o)
Third Derivative
V[/”(X,-' _ f(X/) - 37(()(!*1) _:733“)(172' - f(XwS' O(h)
FIGURE 23.2 ) = Sflx) = 18fxa) + 24fx-0) = 14fx3) + 3fx_4) o)
Backward finite-divided- ' 2h
difference formulas: two Fourth Derivative
versions are presented for each e A »
derivative. The latter version fix) = flod = Afl1) + éﬂx’f) Als) + fixa) Olh)
incorporates more terms of the h
Taylor series expansion and s, Fix) = 3flxi) = 14fx—1) + 26fx-5) — 24f(x—3) + 11fxa] — 2f(x-5) o)
consequently, more accurate. / K
FIGURE 23.3 First Derivative Error
Centered finite-divided- fixcar) = flxy)
difference formulas: two fix) = # Q)
versions are presented for each
derivative. The latter version Fix) = —fxa) + Bfxie) — 8flxi1) + fxiol oll%
incorporates more terms of the 12h
Toy\or series expansion and is, Second Derivative
consequently, more accurate. o) - : 5
?["(X,-) _ '((Xy l) 2;(2)(/) + {(X/ 1) Oll’)2)
Fix) = —fxieo) + 16fx11) — 30fx) + 16fx_)) — flx_o) oK)
12K
Third Derivative
f"’(x,] _ f(></+2' - zf(Xiﬂ) + zf(xf—l) - f(Xi—Q) O'hQ)
25
) = —flxa) + 8fixia) = 13fx1) + 13fx 1) — 8fx o) + flx 3] oIkl
8h°
Fourth Derivative
fri(x) = fxica) = Aflxi) + 67;[:) = Afixy) + flx-o) O|h2)
i) = —flxies) + 12f[xis0) = 39Mxi1) + 56fx) — 39fxi1) + 12f(x0) — fxs) oIk

oh'
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23.3

EXAMPLE 23.3

DERIVATIVES OF UNEQUALLY SPACED DATA

The approaches discussed to this point are primarily designed to determine the derivative
of a given function. For the finite-divided-difference approximations of Sec. 23.1, these
data had to be evenly spaced. For the Richardson extrapolation technique of Sec. 23.2,
these data had to be evenly spaced and generated for successively halved intervals. Such
control of data spacing is usually available only in cases where we can use a function
to generate a table of values.

In contrast, empirically derived information—that is, data from experiments or field
studies—is often collected at unequal intervals. Such information cannot be analyzed
with the techniques discussed to this point.

One way to handle nonequispaced data is to fit a second-order Lagrange interpolat-
ing polynomial [recall Eq. (18.23)] to each set of three adjacent points. Remember that
this polynomial does not require that the points be equispaced. The second-order poly-
nomial can be differentiated analytically to give

2X — Xi — Xivy 2X = X1 — Xin

+ .
(xm1 = x) (X1 — Xi41) fex) (g = x-D) (G = xi41)

fx) = flxi-y)

2% — X — X;
+ f(xi+1) (23.9)
(i1 = X)) (X1 — X0)

where x is the value at which you want to estimate the derivative. Although this equation
is certainly more complicated than the first-derivative approximations from Figs. 23.1
through 23.3, it has some important advantages. First, it can be used to estimate the
derivative anywhere within the range prescribed by the three points. Second, the points
themselves do not have to be equally spaced. Third, the derivative estimate is of the same
accuracy as the centered difference [Eq. (4.22)]. In fact, for equispaced points, Eq. (23.9)
evaluated at x = x; reduces to Eq. (4.22).

Differentiating Unequally Spaced Data

Problem Statement. As in Fig. 23.4, a temperature gradient can be measured down
into the soil. The heat flux at the soil-air interface can be computed with Fourier’s law,

dT
q(z = 0) = ~kpC—~
dz z=0

where g = heat flux (W/m?), k = coefficient of thermal diffusivity in soil (= 3.5 X
10" m%s), p = soil density (= 1800 kg/m®), and C = soil specific heat (= 840 J/(kg - °C)).
Note that a positive value for flux means that heat is transferred from the air to the soil.

Use numerical differentiation to evaluate the gradient at the soil-air interface and employ
this estimate to determine the heat flux into the ground.
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Air 10 12 135 T(°C)
Soil ! !
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FIGURE 23.4

Temperature versus depth info the soil.

Solution.  Equation (23.9) can be used to calculate the derivative as

) = 13.5 2(0) — 1.25 — 3.75 N 2(0) —0—3.75
F) = 13. (0 — 1.25)(0 — 3.75) (1.25 — 0)(1.25 — 3.75)
200 —0—1.25
+ 10

(3.75 — 0)(3.75 — 1.25)
= —14.4 + 14.4 — 1.333333 = —1.333333°C/cm

which can be used to compute (note that 1 W = 1 J/s),

q(z=0)

70.56 W/m?>

o

)

2 K J
~35 107m(1800g3><840 )(—133.3333
S m kg - °C m
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PROBLEMS

23.1 Compute forward and backward difference approximations
of O(h) and O(/®), and central difference approximations of oh?)
and O(h*) for the first derivative of y = cos x at x = /4 using a
value of 1 = 7/12. Estimate the true percent relative error g, for
each approximation.

23.2 Repeat Prob. 23.1, but for y = log x evaluated at x = 25 with
h=2.

23.3 Use centered difference approximations to estimate the first
and second derivatives of y = ¢" at x = 2 for 4 = 0.1. Employ both
O(h?) and O(h*) formulas for your estimates.

23.4 Use Richardson extrapolation to estimate the first deriva-
tive of y = cos x at x = /4 using step sizes of h; = 7 /3 and
h, = /6. Employ centered differences of O(h*) for the initial
estimates.

23.5 Repeat Prob. 23.4, but for the first derivative of In x at x = 5
using hy = 2 and h, = 1.

23.6 Employ Eq. (23.9) to determine the first derivative of y =
2x* — 6x* — 12x — 8 at x = 0 based on values at x, = —0.5, x; = 1,
and x, = 2. Compare this result with the true value and with an
estimate obtained using a centered difference approximation
based on i = 1.

23.11 Find the 1st derivative estimates for the
following data at x=2

x| 1.5 1.6 2.5 3.5

i | 06767 03734 03201 008422 0.01596

where f(x) = 5¢~*x. Compare your results with the true derivatives.
23.12 The following data are provided for the velocity of an object
as a function of time,

s [0 4 8 12 16 20 24 28 32 36
v, m/sl0 347 618 82.8 99.2 112.0121.9129.7135.7140.4
find dv/dt at x=1, 14, and 35
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23.7 Prove that for equispaced data points, Eq. (23.9) reduces to
Eq. (4.22) atx = x;.

23.8 Compute the first-order central difference approximations of
O(h*) for each of the following functions at the specified location
and for the specified step size:

(@ y=x"+4x—15 atx=0, h=025
(b) y = x*cos x atx =04, h=0.1
(¢) y = tan(x/3) atx=3, h=05
(d) y =sin(0.5Vx)/x atx=1, h=02
() y=e" +x atx=2, h=02

Compare your results with the analytical solutions.
23.9 The following data were collected for the distance traveled
versus time for a rocket:

fs | O 25 50 75 100 125
0

v km 32 58 78 92 100

Use numerical differentiation to estimate the rocket’s velocity and
acceleration at each time.

in other words, find dy/dt , d?y/dt? at each
time.

23.19 The objective of this problem is to compare second-order
accurate forward, backward, and centered finite-difference approx-
imations of the first derivative of a function to the actual value of
the derivative. This will be done for

f) = e —x

(a) Use calculus to determine the correct value of the derivative at
x=2.

(b) To evaluate the centered finite-difference approximations, start
with x = 0.5. Thus, for the first evaluation, the x values for the
centered difference approximation will be x = 2 = 0.5 or

x=15and2.5.Then,x = 1.8 and 2.2 . Compare’

(c) Repeat part (b) for the second-order forward and backward dif-
ferences.

(d) Plot the results of (b) and (¢) versus x. Include the exact result
on the plot for comparison.
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