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4.1.3 Numerical Differentiation

Equation (4.14) is given a formal label in numerical methods—it is called a i nite divided 

difference. It can be represented generally as

f ¿(xi) 5
f(xi11) 2 f(xi)

xi11 2 xi

1 O(xi11 2 xi) (4.17)

or

f ¿(xi) 5
¢fi

h
1 O(h) (4.18)

where D fi is referred to as the i rst forward difference and h is called the step size, that 

is, the length of the interval over which the approximation is made. It is termed a “forward” 

difference because it utilizes data at i and i 1 1 to estimate the derivative (Fig. 4.6a). The 

entire term D fyh is referred to as a i rst i nite divided difference.

This forward divided difference is but one of many that can be developed from the 

Taylor series to approximate derivatives numerically. For example, backward and centered 

difference approximations of the i rst derivative can be developed in a fashion similar to 

the derivation of Eq. (4.14). The former utilizes values at xi21 and xi (Fig. 4.6b), whereas 

the latter uses values that are equally spaced around the point at which the derivative is 

estimated (Fig. 4.6c). More accurate approximations of the i rst derivative can be devel-

oped by including higher-order terms of the Taylor series. Finally, all the above versions 

can also be developed for second, third, and higher derivatives. The following sections 

provide brief summaries illustrating how some of these cases are derived.

Backward Difference Approximation of the First Derivative. The Taylor series can 

be expanded backward to calculate a previous value on the basis of a present value, as in

f(xi21) 5 f(xi) 2 f ¿(xi)h 1
f –(xi)

2!
h2 2 p (4.19)

Truncating this equation after the i rst derivative and rearranging yields

f ¿(xi)  > 
f(xi) 2 f(xi21)

h
5
§ fi

h
(4.20)

where the error is O(h), and = fi is referred to as the i rst backward difference. See Fig. 4.6b 

for a graphical representation.

Numerical Differentiation
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94 TRUNCATION ERRORS AND THE TAYLOR SERIES

FIGURE 4.6
Graphical depiction of (a) forward, (b) backward, and (c) centered fi nite-divided-difference 
 approximations of the fi rst derivative.
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 4.1 THE TAYLOR SERIES 95

Centered Difference Approximation of the First Derivative. A third way to approxi-

mate the i rst derivative is to subtract Eq. (4.19) from the forward Taylor series expansion:

f  (xi11) 5 f  (xi) 1 f ¿(xi)h 1
f –(xi)

2!
 h2 1 p (4.21)

to yield

f  (xi11) 5 f  (xi21) 1 2f ¿(xi)h 1
2f  

(3)(xi)

3!
 h3 1 p

which can be solved for

f ¿(xi) 5
f  (xi11) 2 f  (xi21)

2h
2

f  
(3)(xi)

6
 h2 2 p

or

f ¿(xi) 5
f  (xi11) 2 f  (xi21)

2h
2 O(h2) (4.22)

Equation (4.22) is a centered difference representation of the i rst derivative. Notice that 

the truncation error is of the order of h2 in contrast to the forward and backward 

 approximations that were of the order of h. Consequently, the Taylor series analysis 

yields the practical information that the centered difference is a more accurate represen-

tation of the derivative (Fig. 4.6c). For example, if we halve the step size using a forward 

or backward difference, we would approximately halve the truncation error, whereas for 

the central difference, the error would be quartered.

 EXAMPLE 4.4 Finite-Divided-Difference Approximations of Derivatives

Problem Statement. Use forward and backward difference approximations of O(h) and 

a centered difference approximation of O(h2) to estimate the i rst derivative of

f  (x) 5 20.1x4 2 0.15x3 2 0.5x2 2 0.25x 1 1.25

at x 5 0.5 using a step size h 5 0.5. Repeat the computation using h 5 0.25. Note that 

the derivative can be calculated directly as

f ¿(x) 5 20.4x3 2 0.45x2 2 1.0x 2 0.25

and can be used to compute the true value as f9(0.5) 5 20.9125.

Solution. For h 5 0.5, the function can be employed to determine

xi21 5 0  f  (xi21) 5 1.2

xi      5 0.5  f  (xi)    5 0.925

xi11 5 1.0  f  (xi11) 5 0.2

These values can be used to compute the forward divided difference [Eq. (4.17)],

f  ¿(0.5) > 
0.2 2 0.925

0.5
5 21.45  Zet Z 5 58.9%
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the backward divided difference [Eq. (4.20)],

f ¿(0.5) > 
0.925 2 1.2

0.5
5 20.55 Zet Z 5 39.7%

and the centered divided difference [Eq. (4.22)],

f ¿(0.5) > 
0.2 2 1.2

1.0
5 21.0  Zet Z 5 9.6%

For h 5 0.25,

xi21 5 0.25  f  (xi21) 5 1.10351563

xi      5 0.5  f  (xi)    5 0.925

xi11 5 0.75  f  (xi11) 5 0.63632813

which can be used to compute the forward divided difference,

f ¿(0.5) > 
0.63632813 2 0.925

0.25
5 21.155  Zet Z 5 26.5%

the backward divided difference,

f ¿(0.5) > 
0.925 2 1.10351563

0.25
5 20.714  Zet Z 5 21.7%

and the centered divided difference,

f ¿(0.5) > 
0.63632813 2 1.10351563

0.5
5 20.934  Zet Z 5 2.4%

For both step sizes, the centered difference approximation is more accurate than 

forward or backward differences. Also, as predicted by the Taylor series analysis, halving 

the step size approximately halves the error of the backward and forward differences and 

quarters the error of the centered difference.
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23C H A P T E R

Numerical Differentiation

We have already introduced the notion of numerical differentiation in Chap. 4. Recall 

that we employed Taylor series expansions to derive i nite-divided-difference approxima-

tions of derivatives. In Chap. 4, we developed forward, backward, and centered difference 

approximations of i rst and higher derivatives. Recall that, at best, these estimates had 

errors that were O(h2)—that is, their errors were proportional to the square of the step 

size. This level of accuracy is due to the number of terms of the Taylor series that were 

retained during the derivation of these formulas. We will now illustrate how to develop 

more accurate formulas by retaining more terms.

23.1 HIGH-ACCURACY DIFFERENTIATION FORMULAS

As noted above, high-accuracy divided-difference formulas can be generated by includ-

ing additional terms from the Taylor series expansion. For example, the forward Taylor 

series expansion can be written as [Eq. (4.21)]

f(xi11) 5 f(xi) 1 f ¿(xi)h 1
f –(xi)

2
h2 1 p (23.1)

which can be solved for

f ¿(xi) 5
f(xi11) 2 f(xi)

h
2

f –(xi)

2
h 1 O(h2) (23.2)

In Chap. 4, we truncated this result by excluding the second- and higher-derivative 

terms and were thus left with a i nal result of

f ¿(xi) 5
f(xi11) 2 f(xi)

h
1 O(h) (23.3)

In contrast to this approach, we now retain the second-derivative term by substitut-

ing the following approximation of the second derivative [recall Eq. (4.24)]

f –(xi) 5
f(xi12) 2 2 f(xi11) 1 f(xi)

h2
1 O(h) (23.4)
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656 NUMERICAL DIFFERENTIATION

into Eq. (23.2) to yield

f ¿(xi) 5
f(xi11) 2 f(xi)

h
2

f(xi12) 2 2 f(xi11) 1 f(xi)

2h2
 h 1 O(h2)

or, by collecting terms,

f ¿(xi) 5
2f(xi12) 1 4 f(xi11) 2 3 f(xi)

2h
1 O(h2) (23.5)

 Notice that inclusion of the second-derivative term has improved the accuracy to 

O(h2). Similar improved versions can be developed for the backward and centered for-

mulas as well as for the approximations of the higher derivatives. The formulas are 

summarized in Figs. 23.1 through 23.3 along with all the results from Chap. 4. The 

following example illustrates the utility of these formulas for estimating derivatives.

FIGURE 23.1
Forward fi nite-divided-difference formulas: two versions are presented for each derivative. The 
latter version incorporates more terms of the Taylor series expansion and is, consequently, more 
accurate.

First Derivative Error

f ¿(xi) 5
f (xi11) 2 f (xi)

h
 O(h)

f ¿(xi) 5
2f (xi12) 1 4f (xi11) 2 3f (xi)

2h
 O(h2)

Second Derivative

f–(xi) 5
f (xi12) 2 2f (xi11) 1 f (xi)

h2
 O(h)

f–(xi) 5
2f (xi13) 1 4f (xi12) 2 5f (xi11) 1 2f (xi)

h2
 O(h2)

Third Derivative

f‡(xi) 5
f (xi13) 2 3f (xi12) 1 3f (xi11) 2 f (xi)

h3
 O(h)

f‡(xi) 5
23f (xi14) 1 14f (xi13) 2 24f (xi12) 1 18f (xi11) 2 5f (xi)

2h3
 O(h2)

Fourth Derivative

f––(xi) 5
f (xi14) 2 4f (xi13) 1 6f (xi12) 2 4f (xi11) 1 f (xi)

h4
 O(h)

f––(xi) 5
22f (xi15) 1 11f (xi14) 2 24f (xi13) 1 26f (xi12) 2 14f (xi11) 1 3f (xi)

h4
 O(h2)
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23.1 HIGH-ACCURACY DIFFERENTIATION FORMULAS 657

FIGURE 23.2
Backward fi nite-divided-
difference formulas: two 
versions are presented for each 
derivative. The latter version 
incorporates more terms of the 
Taylor series expansion and is, 
consequently, more accurate.

First Derivative Error

f ¿(xi) 5
f (xi) 2 f (xi21)

h
O(h)

f ¿(xi) 5
3f (xi) 2 4f (xi21) 1 f (xi22)

2h
O(h2)

Second Derivative

f–(xi) 5
f (xi) 2 2f (xi21) 1 f (xi22)

h2
O(h)

f–(xi) 5
2f (xi) 2 5f (xi21) 1 4f (xi22) 2 f (xi23)

h2
O(h2)

Third Derivative

f‡(xi) 5
f (xi) 2 3f (xi21) 1 3f (xi22) 2 f (xi23)

h3
O(h)

f‡(xi) 5
5f (xi) 2 18f (xi21) 1 24f (xi22) 2 14f (xi23) 1 3f (xi24)

2h3
O(h2)

Fourth Derivative

f––(xi) 5
f (xi) 2 4f (xi21) 1 6f (xi22) 2 4f (xi23) 1 f (xi24)

h4
O(h)

f––(xi) 5
3f (xi) 2 14f (xi21) 1 26f (xi22) 2 24f  (xi23) 1 11f (xi24) 2 2f (xi25)

h4
O(h2)

FIGURE 23.3
Centered fi nite-divided- 
difference formulas: two 
 versions are presented for each 
derivative. The latter version 
 incorporates more terms of the 
Taylor series expansion and is, 
consequently, more accurate.

First Derivative Error

f ¿(xi) 5
f (xi11) 2 f (xi21)

2h
O(h2)

f ¿(xi) 5
2f (xi12) 1 8f (xi11) 2 8f (xi21) 1 f (xi22)

12h
O(h4)

Second Derivative

f–(xi) 5
f (xi11) 2 2f (xi) 1 f (xi21)

h2
O(h2)

f–(xi) 5
2f (xi12) 1 16f (xi11) 2 30f (xi) 1 16f (xi21) 2 f (xi22)

12h2
O(h4)

Third Derivative

f‡(xi) 5
f (xi12) 2 2f (xi11) 1 2f (xi21) 2 f (xi22)

2h3
O(h2)

f‡(xi) 5
2f (xi13) 1 8f (xi12) 2 13f (xi11) 1 13f (xi21) 2 8f (xi22) 1 f (xi23)

8h3
O(h4)

Fourth Derivative

f––(xi) 5
f (xi12) 2 4f (xi11) 1 6f (xi) 2 4f (xi21) 1 f (xi22)

h4
O(h2)

f––(xi) 5
2f (xi13) 1 12f (xi12) 2 39f (xi11) 1 56f (xi) 2 39f (xi21) 1 12f (xi22) 2 f (xi23)

6h4
O(h4)
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23.3 DERIVATIVES OF UNEQUALLY SPACED DATA

The approaches discussed to this point are primarily designed to determine the derivative 

of a given function. For the i nite-divided-difference approximations of Sec. 23.1, these 

data had to be evenly spaced. For the Richardson extrapolation technique of Sec. 23.2, 

these data had to be evenly spaced and generated for successively halved intervals. Such 

control of data spacing is usually available only in cases where we can use a function 

to generate a table of values.

In contrast, empirically derived information—that is, data from experiments or i eld 

studies—is often collected at unequal intervals. Such information cannot be analyzed 

with the techniques discussed to this point.

One way to handle nonequispaced data is to i t a second-order Lagrange interpolat-

ing polynomial [recall Eq. (18.23)] to each set of three adjacent points. Remember that 

this polynomial does not require that the points be equispaced. The second-order poly-

nomial can be differentiated analytically to give

 f ¿(x) 5 f(xi21)
2x 2 xi 2 xi11

(xi21 2 xi)(xi21 2 xi11)
1 f(xi)

2x 2 xi21 2 xi11

(xi 2 xi21)(xi 2 xi11)

 1 f(xi11)
2x 2 xi21 2 xi

(xi11 2 xi21)(xi11 2 xi)
(23.9)

where x is the value at which you want to estimate the derivative. Although this equation 

is certainly more complicated than the i rst-derivative approximations from Figs. 23.1 

through 23.3, it has some important advantages. First, it can be used to estimate the 

derivative anywhere within the range prescribed by the three points. Second, the points 

themselves do not have to be equally spaced. Third, the derivative estimate is of the same 

accuracy as the centered difference [Eq. (4.22)]. In fact, for equispaced points, Eq. (23.9) 

evaluated at x 5 xi reduces to Eq. (4.22).

EXAMPLE 23.3 Differentiating Unequally Spaced Data

Problem Statement. As in Fig. 23.4, a temperature gradient can be measured down 

into the soil. The heat l ux at the soil-air interface can be computed with Fourier’s law,

q(z 5 0) 5 2krC 
dT

dz
`
z50

where q 5 heat l ux (W/m2), k 5 coefi cient of thermal diffusivity in soil (> 3.5 3
1027 m2/s), r 5 soil density (> 1800 kg/m3), and C 5 soil specii c heat (> 840 J/(kg ? 8C)).

Note that a positive value for l ux means that heat is transferred from the air to the soil. 

Use numerical differentiation to evaluate the gradient at the soil-air interface and employ 

this estimate to determine the heat l ux into the ground.
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23.4 DERIVATIVES AND INTEGRALS FOR DATA WITH ERRORS 661

Solution. Equation (23.9) can be used to calculate the derivative as

 f ¿(x) 5 13.5 

2(0) 2 1.25 2 3.75

(0 2 1.25)(0 2 3.75)
1 12 

2(0) 2 0 2 3.75

(1.25 2 0)(1.25 2 3.75)

 1 10 

2(0) 2 0 2 1.25

(3.75 2 0)(3.75 2 1.25)

 5 214.4 1 14.4 2 1.333333 5 21.333333°C/cm

which can be used to compute (note that 1 W 5 1 J/s),

 q(z 5 0) 5 23.5 3 1027 m2

s
a1800 

kg

m3
b a840 

J

kg ?°C
b a2133.3333 

°C

m
b

 5 70.56 W/m2

FIGURE 23.4
Temperature versus depth into the soil.

z, cm

T(�C)10Air

Soil

3.75

13.512

1.25
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PROBLEMS

23.1 Compute forward and backward difference approximations 

of O(h) and O(h2), and central difference approximations of O(h2) 

and O(h4) for the i rst derivative of y 5 cos x at x 5 py4 using a

value of h 5 py12. Estimate the true percent relative error et for

each approximation.

23.2 Repeat Prob. 23.1, but for y 5 log x evaluated at x 5 25 with 

h 5 2.

23.3 Use centered difference approximations to estimate the i rst 

and second derivatives of y 5 ex at x 5 2 for h 5 0.1. Employ both 

O(h2) and O(h4) formulas for your estimates.

23.4 Use Richardson extrapolation to estimate the i rst deriva-

tive of y 5 cos x at x 5 py4 using step sizes of h1 5 py3 and

h2 5 py6. Employ centered differences of O(h2) for the initial

 estimates.

23.5 Repeat Prob. 23.4, but for the i rst derivative of ln x at x 5 5 

using h1 5 2 and h2 5 1.

23.6 Employ Eq. (23.9) to determine the i rst derivative of y 5 

2x4 2 6x3 2 12x 2 8 at x 5 0 based on values at x0 5 20.5, x1 5 1,

and x2 5 2. Compare this result with the true value and with an 

estimate obtained using a centered difference approximation 

based on h 5 1.

23.7 Prove that for equispaced data points, Eq. (23.9) reduces to 

Eq. (4.22) at x 5 xi.

23.8 Compute the i rst-order central difference approximations of 

O(h4) for each of the following functions at the specii ed location 

and for the specii ed step size:

(a) y 5 x3 1 4x 2 15 at x 5 0, h 5 0.25

(b) y 5 x2 cos x at x 5 0.4, h 5 0.1

(c) y 5 tan(xy3) at x 5 3, h 5 0.5

(d) y 5 sin(0.51x)yx at x 5 1, h 5 0.2

(e) y 5 ex 1 x at x 5 2, h 5 0.2

Compare your results with the analytical solutions.

23.9 The following data were collected for the distance traveled 

versus time for a rocket:

t, s 0 25 50 75 100 125

y, km 0 32 58 78 92 100

Use numerical differentiation to estimate the rocket’s velocity and 

acceleration at each time.

23.10 Develop a user-friendly program to apply a Romberg algo-

rithm to estimate the derivative of a given function.

23.11 Develop a user-friendly program to obtain i rst-derivative 

estimates for unequally spaced data. Test it with the following data:

x 1 1.5 1.6 2.5 3.5

f(x) 0.6767 0.3734 0.3261 0.08422 0.01596

where f(x) 5 5e22xx. Compare your results with the true derivatives.

23.12 The following data are provided for the velocity of an object 

as a function of time,

t, s 0 4 8 12 16 20 24 28 32 36

v, m/s 0 34.7 61.8 82.8 99.2 112.0121.9129.7135.7140.4

(a) Using the best numerical method available, how far does the

23.19 The objective of this problem is to compare second-order 

accurate forward, backward, and centered i nite-difference approx-

imations of the i rst derivative of a function to the actual value of 

the derivative. This will be done for

f(x) 5 e22x 2 x

(a) Use calculus to determine the correct value of the derivative at 

x 5 2.

(b) To evaluate the centered i nite-difference approximations, start 

with x 5 0.5. Thus, for the i rst evaluation, the x values for the 

centered difference approximation will be x 5 2 6 0.5 or 

x 5 1.5 and 2.5. Then, decrease in increments of 0.01 down to 

a minimum value of Dx 5 0.01.

(c) Repeat part (b) for the second-order forward and backward dif-

ferences. (Note that these can be done at the same time that the 

centered difference is computed in the loop.)

(d) Plot the results of (b) and (c) versus x. Include the exact result 

on the plot for comparison.
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