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Numerical Integration 

Consider the function: 𝑓(𝑥) = 1.5 + sin(𝑥). The curve of this function is: 

The integration of this equation over the indicated period is the area under the curve: 

𝐼 = ∫𝑓(𝑥)𝑑𝑥

𝑏

𝑎

 

If we sample the function into equally spaced points, we can approximate this integration 

through several numerical methods, below are the selected ones for this course: 

𝑥𝑖  𝑓(𝑥𝑖) 
0 1.5 
0.8976 2.2818 
1.7952 2.4749 
2.6928 1.9339 
3.5904 1.0661 
4.4880 0.5251 
5.3856 0.7182 
6.2832 1.5 
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Rectangular Rule 
The simplest way is to add up the values of these samples. This means we divide the area into 

𝑛 rectangles and sum up their areas to compute the overall value. The simplicity of this 

method comes at the price of errors. However, as 𝑛 becomes larger the error decreases. 

 

With: ℎ =
𝑏 − 𝑎

𝑛
 The area is 𝐼 = ℎ∑𝑓(𝑥𝑖)

𝑛−1

𝑖=0

 

 

Example1: Calculate the following integral using rectangular rule. Use 𝑛 = 6. 

∫ cos 𝑥 𝑑𝑥

1.2

0

 

Solution: here we have 𝑓(𝑥) = cos(𝑥) , and ℎ =
1.2−0

6
= 0.2 

𝑖 𝑥𝑖  𝑓(𝑥𝑖) 
0 0 1 
1 0.2 0.9801 
2 0.4 0.9211 
3 0.6 0.8253 
4 0.8 0.6967 
5 1 0.5403 
6 1.2 0.3624 

𝐼 = ℎ∑𝑓(𝑥𝑖)

𝑛−1

𝑖=0

= 0.2(1 + 0.9801 +⋯+ 0.5403) = 0.9927 

 

Example2: repeat Example1 with 𝑛 = 8, 11, 15. 

Answer: 𝐼8 = 0.9781 . 𝐼11 = 0.9659 , 𝐼15 = 0.9570 . For very large 𝑛, we get 𝐼 ≈ the exact value 

which is 0.932. 
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Example3: Calculate the following integral using rectangular rule. Use 𝑛 = 8. 

∫{0.5 + sin(𝑥)}𝑑𝑥

3

−2

 

Solution: here we have 𝑓(𝑥) = 0.5 + sin(𝑥) , and ℎ = 0.625. 

𝑖 𝑥𝑖  𝑓(𝑥𝑖) 
0 -2 -0.4093 
1 -1.375 -0.4809 
2 -0.75 -0.1816 
3 -0.125  0.3753 
4  0.5  0.9794 
5  1.125  1.4023 
6  1.75  1.4840 
7  2.375  1.1937 
8  3  0.6411 

𝐼 = 0.625∑𝑓(𝑥𝑖)

7

𝑖=0

= 2.7268 

Example4: Calculate the following integral using rectangular rule. Use 𝑛 = 6. 

∫
𝑒−𝑥

2

√2𝜋
𝑑𝑥

3

−1

 

Solution: here we can build the table using only: 

∫𝑒−𝑥
2
𝑑𝑥

3

−1

 

And then divide the result by √2𝜋 . So, 𝑓(𝑥) = 𝑒−𝑥
2
 , and ℎ = 0.6667. 

𝑖 𝑥𝑖  𝑓𝑖  
0 -1 0.3679 
1 -0.3333 0.8948 
2  0.3333 0.8948 
3  1 0.3679 
4  1.6667 0.0622 
5  2.3333 0.0043 
6  3 0.0001 

𝐼 =
0.6667

√2𝜋
∑𝑓𝑖

5

𝑖=0

= 0.6894 

We can write 𝑓(𝑥𝑖) as  𝑓𝑖  for simplicity. 
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The Trapezoidal Rule 
Instead of a simple rectangle, the slice here is a Trapezoid. This provides a closer 

approximation to the actual function. 

 

 

 

 

With: ℎ =
𝑏 − 𝑎

𝑛
 The area is 𝐼 =

ℎ

2
{𝑓0 + 𝑓𝑛} + ℎ∑𝑓𝑖

𝑛−1

𝑖=1
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Example5: repeat Example1 using Trapezoidal rule. 

Solution: for the same table, we get 

𝐼 =
0.2

2
(1 + 0.3624) + 0.2(0.9801 +⋯+ 0.5403) = 0.9289 

Which is closer to the actual value 0.9320 at the same 𝑛. Even for larger 𝑛, 𝐼8 = 0.9303 . 𝐼11 =

0.9312 , 𝐼15 = 0.9315. 

 

Simpson’s 1/3 Rule 
This method obtains a more accurate estimate of an integral by using higher-order 

polynomials to connect the points. 

 

With: ℎ =
𝑏 − 𝑎

𝑛
 where 𝑛 is even 𝐼 =

ℎ

3
[𝑓0 + 𝑓𝑛 + 4 ∑ 𝑓𝑖

𝑛−1

𝑖=1,3,5

+ 2 ∑ 𝑓𝑖

𝑛−2

𝑖=2,4,6

] 

 

Example6: repeat Example1 using Simpson’s 1/3 Rule. 

Solution: 

𝐼 =
0.2

3
[1 + 0.3624 + 4(0.9801 + 0.8253 + 0.5403) + 2(0.9211 + 0.6967)] = 0.9321 

The table below shows the comparison between the actual value from the studied rules: 

 
Computed 𝜀𝑡 % 

Actual Value 0.9320 
 

Simpson’s 1/3 Rule 0.9321 0.011 

The Trapezoidal Rule 0.9289 0.333 

Rectangular Rule 0.9927 6.513 
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