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C H A P T E R

Runge-Kutta Methods

This chapter is devoted to solving ordinary differential equations of the form

dy

dx
5 f(x, y)

In Chap. 1, we used a numerical method to solve such an equation for the velocity of 

the falling parachutist. Recall that the method was of the general form

New value 5 old value 1 slope 3 step size

or, in mathematical terms,

yi11 5 yi 1 fh (25.1)

According to this equation, the slope estimate of f is used to extrapolate from an old value 

yi to a new value yi 1 1 over a distance h (Fig. 25.1). This formula can be applied step by 

step to compute out into the future and, hence, trace out the trajectory of the solution.

FIGURE 25.1
Graphical depiction of a one-
step method.
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 All one-step methods can be expressed in this general form, with the only difference 

being the manner in which the slope is estimated. As in the falling parachutist problem, 

the simplest approach is to use the differential equation to estimate the slope in the form 

of the i rst derivative at xi. In other words, the slope at the beginning of the interval is 

taken as an approximation of the average slope over the whole interval. This approach, 

called Euler’s method, is discussed in the i rst part of this chapter. This is followed by 

other one-step methods that employ alternative slope estimates that result in more ac-

curate predictions. All these techniques are generally called Runge-Kutta methods.

 25.1 EULER’S METHOD

The i rst derivative provides a direct estimate of the slope at xi (Fig. 25.2):

f 5 f(xi, yi)

where f(xi, yi) is the differential equation evaluated at xi and yi. This estimate can be 

substituted into Eq. (25.1):

yi11 5 yi 1 f(xi, yi)h (25.2)

 This formula is referred to as Euler’s (or the Euler-Cauchy or the point-slope) 

method. A new value of y is predicted using the slope (equal to the i rst derivative at the 

original value of x) to extrapolate linearly over the step size h (Fig. 25.2).

 EXAMPLE 25.1 Euler’s Method

Problem Statement. Use Euler’s method to numerically integrate Eq. (PT7.13):

dy

dx
5 22x3 1 12x2 2 20x 1 8.5

y

xxi + 1

error

Predicted

True

xi

h

FIGURE 25.2
Euler’s method.
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from x 5 0 to x 5 4 with a step size of 0.5. The initial condition at x 5 0 is y 5 1. 

Recall that the exact solution is given by Eq. (PT7.16):

y 5 20.5x4 1 4x3 2 10x2 1 8.5x 1 1

Solution. Equation (25.2) can be used to implement Euler’s method:

y(0.5) 5 y(0) 1 f(0, 1)0.5

where y(0) 5 1 and the slope estimate at x 5 0 is

f(0, 1) 5 22(0)3 1 12(0)2 2 20(0) 1 8.5 5 8.5

Therefore,

y(0.5) 5 1.0 1 8.5(0.5) 5 5.25

The true solution at x 5 0.5 is

y 5 20.5(0.5)4 1 4(0.5)3 2 10(0.5)2 1 8.5(0.5) 1 1 5 3.21875

Thus, the error is

Et 5 true 2 approximate 5 3.21875 2 5.25 5 22.03125

or, expressed as percent relative error, et 5 263.1%. For the second step,

 y(1) 5 y(0.5) 1 f(0.5, 5.25)0.5

 5 5.25 1 [22(0.5)3 1 12(0.5)2 2 20(0.5) 1 8.5]0.5

 5 5.875

The true solution at x 5 1.0 is 3.0, and therefore, the percent relative error is 295.8%. 

The computation is repeated, and the results are compiled in Table 25.1 and Fig. 25.3. 

TABLE 25.1  Comparison of true and approximate values of the integral of 
y9 5 22x3 1 12x2 2 20x 1 8.5, with the initial condition that y 5 1 at 
x 5 0. The approximate values were computed using Euler’s method with a 
step size of 0.5. The local error refers to the error incurred over a single 
step. It is calculated with a Taylor series expansion as in Example 25.2. 
The global error is the total discrepancy due to past as well as present steps.

 Percent Relative Error

 x ytrue yEuler Global Local

0.0 1.00000 1.00000
0.5 3.21875 5.25000 263.1 263.1
1.0 3.00000 5.87500 295.8 228.1
1.5 2.21875 5.12500 2131.0 21.4
2.0 2.00000 4.50000 2125.0 20.3
2.5 2.71875 4.75000 274.7 17.2
3.0 4.00000 5.87500 246.9 3.9
3.5 4.71875 7.12500 251.0 211.3
4.0 3.00000 7.00000 2133.3 253.1
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Note  that,  although  the  computation  captures  the  general  trend  of  the  true  solution,  the  

error is considerable. As discussed in the next section, this error can be reduced by using 

a  smaller  step size.

FIGURE 25.3
Comparison of the true solution with a numerical solution using Euler’s method for the integral of 
y9 5 22x3 1 12x2 2 20x 1 8.5 from x 5 0 to x 5 4 with a step size of 0.5. The initial 
 condition at x 5 0 is y 5 1.
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25.3.3 Fourth-Order Runge-Kutta Methods

The most popular RK methods are fourth order. As with the second-order approaches, 

there are an ini nite number of versions. The following is the most commonly used form, 

and we therefore call it the classical fourth-order RK method:

yi11 5 yi 1
1

6
(k1 1 2k2 1 2k3 1 k4)h (25.40)

where

k1 5 f(xi, yi) (25.40a)

k2 5 f axi 1
1

2
h, yi 1

1

2
k1hb (25.40b)

FIGURE 25.15
Graphical depiction of the slope estimates comprising the fourth-order RK method.
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 25.3 RUNGE-KUTTA  METHODS

Runge-Kutta (RK)  methods  achieve  the  accuracy  of  a  Taylor  series  approach  without

requiring the calculation of  higher  derivatives.  Many variations exist  but  all  can be cast  

in  the generalized form of  Eq.  (25.1):

yi11 5 yi 1 f(xi, yi, h)h (25.28)

where f(xi, yi, h) is called an increment function, which can be interpreted as a represen-

tative slope over the interval.  The increment function can be written in general  form as

f 5 a1k1 1 a2k2 1 p 1 ankn (25.29)
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k3 5 f axi 1
1

2
 h, yi 1

1

2
 k2hb (25.40c)

k4 5 f(xi 1 h, yi 1 k3h) (25.40d)

 Notice that for ODEs that are a function of x alone, the classical fourth-order RK 

method is similar to Simpson’s 1y3 rule. In addition, the fourth-order RK method is 

similar to the Heun approach in that multiple estimates of the slope are developed in order 

to come up with an improved average slope for the interval. As depicted in Fig. 25.15, 

each of the k’s represents a slope. Equation (25.40) then represents a weighted average 

of these to arrive at the improved slope.

 EXAMPLE 25.7 Classical Fourth-Order RK Method

Problem Statement.

(a) Use the classical fourth-order RK method [Eq. (25.40)] to integrate

f(x, y) 5 22x3 1 12x2 2 20x 1 8.5

 using a step size of h 5 0.5 and an initial condition of y 5 1 at x 5 0.

(b) Similarly, integrate

f(x, y) 5 4e0.8x 2 0.5y

 using h 5 0.5 with y(0) 5 2 from x 5 0 to 0.5.

Solution.

(a) Equations (25.40a) through (25.40d) are used to compute k1 5 8.5, k2 5 4.21875, 

k3 5 4.21875 and k4 5 1.25, which are substituted into Eq. (25.40) to yield

 y(0.5) 5 1 1 e 1

6
 [8.5 1 2(4.21875) 1 2(4.21875) 1 1.25] f  0.5

 5 3.21875

  which is exact. Thus, because the true solution is a quartic [Eq. (PT7.16)], the fourth-

order method gives an exact result.

(b) For this case, the slope at the beginning of the interval is computed as

k1 5 f(0, 2) 5 4e0.8(0) 2 0.5(2) 5 3

 This value is used to compute a value of y and a slope at the midpoint,

y(0.25) 5 2 1 3(0.25) 5 2.75

k2 5 f(0.25, 2.75) 5 4e0.8(0.25) 2 0.5(2.75) 5 3.510611

 This slope in turn is used to compute another value of y and another slope at the midpoint,

y(0.25) 5 2 1 3.510611(0.25) 5 2.877653

k3 5 f(0.25, 2.877653) 5 4e0.8(0.25) 2 0.5(2.877653) 5 3.446785

 Next, this slope is used to compute a value of y and a slope at the end of the interval,

y(0.5) 5 2 1 3.071785(0.5) 5 3.723392

k4 5 f(0.5, 3.723392) 5 4e0.8(0.5) 2 0.5(3.723392) 5 4.105603
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 Finally, the four slope estimates are combined to yield an average slope. This average 

slope is  then used to make the i nal  prediction at  the end of  the interval.

f 5
1

6
[3 1 2(3.510611) 1 2(3.446785) 1 4.105603] 5 3.503399

y(0.5) 5 2 1 3.503399(0.5) 5 3.751699

which compares  favorably with the true solution of  3.751521.

PROBLEMS

25.1 Solve the following initial value problem over the interval from 

t 5 0 to 2 where y(0) 5 1. Display all your results on the same graph.

dy

dt
5 yt 

2 2 1.1y

(a)  Analytically.

(b) Euler’s method with h 5 0.5 and 0.25.

(c) Midpoint method with h 5 0.5.

(d) Fourth-order RK method with h 5 0.5.

25.2 Solve the following problem over the interval from x 5 0 to 1 

using a step size of 0.25 where y(0) 5 1. Display all your results on 

the same graph.

dy

dt
5 (1 1 4t)1y

(a)  Analytically.

(b)  Euler’s  method.

(c) Heun’s method without iteration.

(d)  Ralston’s  method.

(e) Fourth-order RK method.
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